These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Thermus scotoductus and Rhodothermus marinus DNA ligases have higher ligation efficiencies than thermus thermophilus DNA ligase. Housby JN, Southern EM. Anal Biochem; 2002 Mar 01; 302(1):88-94. PubMed ID: 11846380 [Abstract] [Full Text] [Related]
23. Characterization of an ATP-dependent DNA ligase from the thermophilic archaeon Methanobacterium thermoautotrophicum. Sriskanda V, Kelman Z, Hurwitz J, Shuman S. Nucleic Acids Res; 2000 Jun 01; 28(11):2221-8. PubMed ID: 10871342 [Abstract] [Full Text] [Related]
24. Effects of base mismatches on joining of short oligodeoxynucleotides by DNA ligases. Pritchard CE, Southern EM. Nucleic Acids Res; 1997 Sep 01; 25(17):3403-7. PubMed ID: 9254695 [Abstract] [Full Text] [Related]
26. Molecular characterisation of a DNA ligase gene of the extremely thermophilic archaeon Desulfurolobus ambivalens shows close phylogenetic relationship to eukaryotic ligases. Kletzin A. Nucleic Acids Res; 1992 Oct 25; 20(20):5389-96. PubMed ID: 1437556 [Abstract] [Full Text] [Related]
27. Thermophilic HB8 DNA ligase: effects of polyethylene glycols and polyamines on blunt-end ligation of DNA. Takahashi M, Uchida T. J Biochem; 1986 Jul 25; 100(1):123-31. PubMed ID: 3759925 [Abstract] [Full Text] [Related]
29. DNA ligases from thermophilic bacteria enhance PCR amplification of long DNA sequences. Ignatov KB, Kramarov VM. Biochemistry (Mosc); 2009 May 25; 74(5):557-61. PubMed ID: 19538130 [Abstract] [Full Text] [Related]
30. Expression and biochemical characterization of Plasmodium falciparum DNA ligase I. Buguliskis JS, Casta LJ, Butz CE, Matsumoto Y, Taraschi TF. Mol Biochem Parasitol; 2007 Oct 25; 155(2):128-37. PubMed ID: 17688957 [Abstract] [Full Text] [Related]
31. Mutational analysis of Escherichia coli DNA ligase identifies amino acids required for nick-ligation in vitro and for in vivo complementation of the growth of yeast cells deleted for CDC9 and LIG4. Sriskanda V, Schwer B, Ho CK, Shuman S. Nucleic Acids Res; 1999 Oct 15; 27(20):3953-63. PubMed ID: 10497258 [Abstract] [Full Text] [Related]
32. Mismatch DNA recognition protein from an extremely thermophilic bacterium, Thermus thermophilus HB8. Takamatsu S, Kato R, Kuramitsu S. Nucleic Acids Res; 1996 Feb 15; 24(4):640-7. PubMed ID: 8604304 [Abstract] [Full Text] [Related]
35. Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium Deinococcus radiodurans. Blasius M, Buob R, Shevelev IV, Hubscher U. BMC Mol Biol; 2007 Aug 16; 8():69. PubMed ID: 17705817 [Abstract] [Full Text] [Related]
36. Novel DNA ligase with broad nucleotide cofactor specificity from the hyperthermophilic crenarchaeon Sulfophobococcus zilligii: influence of ancestral DNA ligase on cofactor utilization. Sun Y, Seo MS, Kim JH, Kim YJ, Kim GA, Lee JI, Lee JH, Kwon ST. Environ Microbiol; 2008 Dec 16; 10(12):3212-24. PubMed ID: 18647334 [Abstract] [Full Text] [Related]
37. NAD+-dependent DNA ligase encoded by a eukaryotic virus. Sriskanda V, Moyer RW, Shuman S. J Biol Chem; 2001 Sep 28; 276(39):36100-9. PubMed ID: 11459847 [Abstract] [Full Text] [Related]
38. Comparative kinetics of D-xylose and D-glucose isomerase activities of the D-xylose isomerase from Thermus aquaticus HB8. Lehmacher A, Bisswanger H. Biol Chem Hoppe Seyler; 1990 Jun 28; 371(6):527-36. PubMed ID: 2390219 [Abstract] [Full Text] [Related]
39. Conserved residues in domain Ia are required for the reaction of Escherichia coli DNA ligase with NAD+. Sriskanda V, Shuman S. J Biol Chem; 2002 Mar 22; 277(12):9695-700. PubMed ID: 11781321 [Abstract] [Full Text] [Related]
40. NAD+-dependent DNA ligases of Mycobacterium tuberculosis and Streptomyces coelicolor. Wilkinson A, Sayer H, Bullard D, Smith A, Day J, Kieser T, Bowater R. Proteins; 2003 May 15; 51(3):321-6. PubMed ID: 12696044 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]