These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
376 related items for PubMed ID: 9889981
21. Serendipitous crystallization and structure determination of bacterioferritin from Achromobacter. Dwivedy A, Jha B, Singh KH, Ahmad M, Ashraf A, Kumar D, Biswal BK. Acta Crystallogr F Struct Biol Commun; 2018 Sep 01; 74(Pt 9):558-566. PubMed ID: 30198888 [Abstract] [Full Text] [Related]
22. Siderophore-controlled iron assimilation in the enterobacterium Erwinia chrysanthemi: evidence for the involvement of bacterioferritin and the Suf iron-sulfur cluster assembly machinery. Expert D, Boughammoura A, Franza T. J Biol Chem; 2008 Dec 26; 283(52):36564-72. PubMed ID: 18990691 [Abstract] [Full Text] [Related]
23. The iron oxidation and hydrolysis chemistry of Escherichia coli bacterioferritin. Yang X, Le Brun NE, Thomson AJ, Moore GR, Chasteen ND. Biochemistry; 2000 Apr 25; 39(16):4915-23. PubMed ID: 10769150 [Abstract] [Full Text] [Related]
24. Bis-methionine axial ligation of haem in bacterioferritin from Pseudomonas aeruginosa. Cheesman MR, Thomson AJ, Greenwood C, Moore GR, Kadir F. Nature; 1990 Aug 23; 346(6286):771-3. PubMed ID: 2167456 [Abstract] [Full Text] [Related]
25. Core formation in Escherichia coli bacterioferritin requires a functional ferroxidase center. Baaghil S, Lewin A, Moore GR, Le Brun NE. Biochemistry; 2003 Dec 02; 42(47):14047-56. PubMed ID: 14636073 [Abstract] [Full Text] [Related]
26. Iron metabolism in Rhodobacter capsulatus. Characterisation of bacterioferritin and formation of non-haem iron particles in intact cells. Ringeling PL, Davy SL, Monkara FA, Hunt C, Dickson DP, McEwan AG, Moore GR. Eur J Biochem; 1994 Aug 01; 223(3):847-55. PubMed ID: 8055962 [Abstract] [Full Text] [Related]
27. Regulation of Iron Storage by CsrA Supports Exponential Growth of Escherichia coli. Pourciau C, Pannuri A, Potts A, Yakhnin H, Babitzke P, Romeo T. mBio; 2019 Aug 06; 10(4):. PubMed ID: 31387901 [Abstract] [Full Text] [Related]
28. The physiological role of ferritin-like compounds in bacteria. Smith JL. Crit Rev Microbiol; 2004 Aug 06; 30(3):173-85. PubMed ID: 15490969 [Abstract] [Full Text] [Related]
29. Electron Transfer from Haem to the Di-Iron Ferroxidase Centre in Bacterioferritin. Pullin J, Bradley JM, Moore GR, Le Brun NE, Wilson MT, Svistunenko DA. Angew Chem Weinheim Bergstr Ger; 2021 Apr 06; 133(15):8457-8460. PubMed ID: 38505322 [Abstract] [Full Text] [Related]
30. The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combination of rubredoxin-like FeS4 and ferritin-like diiron domains. deMaré F, Kurtz DM, Nordlund P. Nat Struct Biol; 1996 Jun 06; 3(6):539-46. PubMed ID: 8646540 [Abstract] [Full Text] [Related]
31. Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Keren N, Aurora R, Pakrasi HB. Plant Physiol; 2004 Jul 06; 135(3):1666-73. PubMed ID: 15247377 [Abstract] [Full Text] [Related]
32. Kinetic and structural characterization of an intermediate in the biomineralization of bacterioferritin. Le Brun NE, Wilson MT, Andrews SC, Guest JR, Harrison PM, Thomson AJ, Moore GR. FEBS Lett; 1993 Oct 25; 333(1-2):197-202. PubMed ID: 8224163 [Abstract] [Full Text] [Related]
33. Redox-dependent structural changes in the Azotobacter vinelandii bacterioferritin: new insights into the ferroxidase and iron transport mechanism. Swartz L, Kuchinskas M, Li H, Poulos TL, Lanzilotta WN. Biochemistry; 2006 Apr 11; 45(14):4421-8. PubMed ID: 16584178 [Abstract] [Full Text] [Related]
34. Bacterioferritins and ferritins are distantly related in evolution. Conservation of ferroxidase-centre residues. Andrews SC, Smith JM, Yewdall SJ, Guest JR, Harrison PM. FEBS Lett; 1991 Nov 18; 293(1-2):164-8. PubMed ID: 1959654 [Abstract] [Full Text] [Related]
35. Characterization of the Bacterioferritin/Bacterioferritin Associated Ferredoxin Protein-Protein Interaction in Solution and Determination of Binding Energy Hot Spots. Wang Y, Yao H, Cheng Y, Lovell S, Battaile KP, Midaugh CR, Rivera M. Biochemistry; 2015 Oct 13; 54(40):6162-75. PubMed ID: 26368531 [Abstract] [Full Text] [Related]
36. Tyr25, Tyr58 and Trp133 of Escherichia coli bacterioferritin transfer electrons between iron in the central cavity and the ferroxidase centre. Bradley JM, Svistunenko DA, Moore GR, Le Brun NE. Metallomics; 2017 Oct 18; 9(10):1421-1428. PubMed ID: 28914315 [Abstract] [Full Text] [Related]
37. Site-directed replacement of the coaxial heme ligands of bacterioferritin generates heme-free variants. Andrews SC, Le Brun NE, Barynin V, Thomson AJ, Moore GR, Guest JR, Harrison PM. J Biol Chem; 1995 Oct 06; 270(40):23268-74. PubMed ID: 7559480 [Abstract] [Full Text] [Related]
38. Haem binding to ferritin and possible mechanisms of physiological iron uptake and release by ferritin. Moore GR, Kadir FH, al-Massad F. J Inorg Biochem; 1995 Oct 06; 47(3-4):175-81. PubMed ID: 1431879 [Abstract] [Full Text] [Related]
39. Structural studies of bacterioferritin B from Pseudomonas aeruginosa suggest a gating mechanism for iron uptake via the ferroxidase center . Weeratunga SK, Lovell S, Yao H, Battaile KP, Fischer CJ, Gee CE, Rivera M. Biochemistry; 2010 Feb 16; 49(6):1160-75. PubMed ID: 20067302 [Abstract] [Full Text] [Related]
40. Bfd, a New Class of [2Fe-2S] Protein That Functions in Bacterial Iron Homeostasis, Requires a Structural Anion Binding Site. Wijerathne H, Yao H, Wang Y, Lovell S, Battaile KP, Rivera M. Biochemistry; 2018 Sep 25; 57(38):5533-5543. PubMed ID: 30183257 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]