These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
130 related items for PubMed ID: 9890880
1. Key role of phenylalanine 20 in cytochrome c3: structure, stability, and function studies. Dolla A, Arnoux P, Protasevich I, Lobachov V, Brugna M, Giudici-Orticoni MT, Haser R, Czjzek M, Makarov A, Bruschi M. Biochemistry; 1999 Jan 05; 38(1):33-41. PubMed ID: 9890880 [Abstract] [Full Text] [Related]
2. Replacement of lysine 45 by uncharged residues modulates the redox-Bohr effect in tetraheme cytochrome c3 of Desulfovibrio vulgaris (Hildenborough). Saraiva LM, Salgueiro CA, da Costa PN, Messias AC, LeGall J, van Dongen WM, Xavier AV. Biochemistry; 1998 Sep 01; 37(35):12160-5. PubMed ID: 9724528 [Abstract] [Full Text] [Related]
3. The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway. Pieulle L, Morelli X, Gallice P, Lojou E, Barbier P, Czjzek M, Bianco P, Guerlesquin F, Hatchikian EC. J Mol Biol; 2005 Nov 18; 354(1):73-90. PubMed ID: 16226767 [Abstract] [Full Text] [Related]
4. Roles of noncoordinated aromatic residues in redox regulation of cytochrome c3 from Desulfovibrio vulgaris Miyazaki F. Takayama Y, Harada E, Kobayashi R, Ozawa K, Akutsu H. Biochemistry; 2004 Aug 31; 43(34):10859-66. PubMed ID: 15323546 [Abstract] [Full Text] [Related]
5. Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Yahata N, Saitoh T, Takayama Y, Ozawa K, Ogata H, Higuchi Y, Akutsu H. Biochemistry; 2006 Feb 14; 45(6):1653-62. PubMed ID: 16460012 [Abstract] [Full Text] [Related]
6. Ferredoxin electron transfer site on cytochrome c3. Structural hypothesis of an intramolecular electron transfer pathway within a tetra-heme cytochrome. Dolla A, Guerlesquin F, Bruschi M, Haser R. J Mol Recognit; 1991 Feb 14; 4(1):27-33. PubMed ID: 1657066 [Abstract] [Full Text] [Related]
9. Kinetics and interaction studies between cytochrome c3 and Fe-only hydrogenase from Desulfovibrio vulgaris Hildenborough. Brugna M, Giudici-Orticoni MT, Spinelli S, Brown K, Tegoni M, Bruschi M. Proteins; 1998 Dec 01; 33(4):590-600. PubMed ID: 9849942 [Abstract] [Full Text] [Related]
11. Comparison of low oxidoreduction potential cytochrome c553 from Desulfovibrio vulgaris with the class I cytochrome c family. Blackledge MJ, Guerlesquin F, Marion D. Proteins; 1996 Feb 01; 24(2):178-94. PubMed ID: 8820485 [Abstract] [Full Text] [Related]
12. Crystal structure of the oxidised and reduced acidic cytochrome c3from Desulfovibrio africanus. Nørager S, Legrand P, Pieulle L, Hatchikian C, Roth M. J Mol Biol; 1999 Jul 23; 290(4):881-902. PubMed ID: 10398589 [Abstract] [Full Text] [Related]
13. Strategic roles of axial histidines in structure formation and redox regulation of tetraheme cytochrome c3. Takayama Y, Werbeck ND, Komori H, Morita K, Ozawa K, Higuchi Y, Akutsu H. Biochemistry; 2008 Sep 09; 47(36):9405-15. PubMed ID: 18702516 [Abstract] [Full Text] [Related]
14. Structure-function relationship in type II cytochrome c(3) from Desulfovibrio africanus: a novel function in a familiar heme core. Pereira PM, Pacheco I, Turner DL, Louro RO. J Biol Inorg Chem; 2002 Sep 09; 7(7-8):815-22. PubMed ID: 12203018 [Abstract] [Full Text] [Related]
19. Replacements in a conserved leucine cluster in the hydrophobic heme pocket of cytochrome c. Lo TP, Murphy ME, Guillemette JG, Smith M, Brayer GD. Protein Sci; 1995 Feb 09; 4(2):198-208. PubMed ID: 7757009 [Abstract] [Full Text] [Related]
20. Functional roles of the heme architecture and its environment in tetraheme cytochrome c. Akutsu H, Takayama Y. Acc Chem Res; 2007 Mar 09; 40(3):171-8. PubMed ID: 17370988 [Abstract] [Full Text] [Related] Page: [Next] [New Search]