These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


146 related items for PubMed ID: 9893455

  • 1. [Renal hemodynamic interactions of nitric oxide and angiotensin II].
    Nakanishi K, Hamada K, Hara N, Nagai Y, Nakamura K.
    Nihon Jinzo Gakkai Shi; 1998 Nov; 40(8):567-72. PubMed ID: 9893455
    [Abstract] [Full Text] [Related]

  • 2. Effects of prostaglandins and nitric oxide on the renal effects of angiotensin II in the anaesthetized rat.
    Clayton JS, Clark KL, Johns EJ, Drew GM.
    Br J Pharmacol; 1998 Aug; 124(7):1467-74. PubMed ID: 9723960
    [Abstract] [Full Text] [Related]

  • 3. The intrarenal blood flow distribution and role of nitric oxide in diabetic rats.
    Nakanishi K, Onuma S, Higa M, Nagai Y, Inokuchi T.
    Metabolism; 2005 Jun; 54(6):788-92. PubMed ID: 15931616
    [Abstract] [Full Text] [Related]

  • 4. [Renal effects of the chronic inhibition of nitric oxide synthesis in cirrhotic rats with ascites].
    Ortiz MC, Fortepiani LA, Martínez-Salgado C, Eleno N, Atucha NM, López-Novoa JM, García-Estañ J.
    Nefrologia; 2001 Jun; 21(6):556-64. PubMed ID: 11881425
    [Abstract] [Full Text] [Related]

  • 5. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI, Wang L, Liu F, Bartula LL.
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [Abstract] [Full Text] [Related]

  • 6. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI, Wang L, Liu F, Bartula LL.
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [Abstract] [Full Text] [Related]

  • 7. Effects of angiotensin-converting-enzyme inhibitors in combination with diuretics on blood pressure and renal injury in nitric oxide-deficiency-induced hypertension in rats.
    García-Estañ J, Ortiz MC, O'Valle F, Alcaraz A, Navarro EG, Vargas F, Evangelista S, Atucha NM.
    Clin Sci (Lond); 2006 Feb; 110(2):227-33. PubMed ID: 16197366
    [Abstract] [Full Text] [Related]

  • 8. Investigation of the inhibitory effect of N(G)-nitro-L-arginine methyl ester on the antihypertensive effect of the angiotensin AT1 receptor antagonist, GR138950.
    Anderson IK, Drew GM.
    Br J Pharmacol; 1997 Dec; 122(7):1385-94. PubMed ID: 9421286
    [Abstract] [Full Text] [Related]

  • 9. Intrarenal haemodynamics and renal dysfunction in endotoxaemia: effects of nitric oxide synthase inhibition.
    Millar CG, Thiemermann C.
    Br J Pharmacol; 1997 Aug; 121(8):1824-30. PubMed ID: 9283724
    [Abstract] [Full Text] [Related]

  • 10. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI, Wang L, Liu F, Bartula LL.
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [Abstract] [Full Text] [Related]

  • 11. Decrease in cochlear blood flow with infusion of nitric oxide synthase inhibitor and its recovery with L-arginine infusion: comparison with abdominal blood flow and auricular blood flow.
    Hoshijima H, Makimoto K.
    Acta Otolaryngol; 2002 Dec; 122(8):808-15. PubMed ID: 12542197
    [Abstract] [Full Text] [Related]

  • 12. Role of NO and COX pathways in mediation of adenosine A1 receptor-induced renal vasoconstriction.
    Walkowska A, Dobrowolski L, Kompanowska-Jezierska E, Sadowski J.
    Exp Biol Med (Maywood); 2007 May; 232(5):690-4. PubMed ID: 17463166
    [Abstract] [Full Text] [Related]

  • 13. Local renal medullary L-NAME infusion enhances the effect of long-term angiotensin II treatment.
    Szentiványi M, Maeda CY, Cowley AW.
    Hypertension; 1999 Jan; 33(1 Pt 2):440-5. PubMed ID: 9931144
    [Abstract] [Full Text] [Related]

  • 14. Effects of ATP on rat renal haemodynamics and excretion: role of sodium intake, nitric oxide and cytochrome P450.
    Dobrowolski L, Walkowska A, Kompanowska-Jezierska E, Kuczeriszka M, Sadowski J.
    Acta Physiol (Oxf); 2007 Jan; 189(1):77-85. PubMed ID: 17280559
    [Abstract] [Full Text] [Related]

  • 15. Nitric oxide and renal nerves: comparison of effects on renal circulation and sodium excretion in anesthetized rats.
    Walkowska A, Kompanowska-Jezierska E, Sadowski J.
    Kidney Int; 2004 Aug; 66(2):705-12. PubMed ID: 15253725
    [Abstract] [Full Text] [Related]

  • 16. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.
    Zou AP, Wu F, Cowley AW.
    Hypertension; 1998 Jan; 31(1 Pt 2):271-6. PubMed ID: 9453315
    [Abstract] [Full Text] [Related]

  • 17. Interactions between nitric oxide and angiotensin II on renal cortical and papillary blood flow.
    Madrid MI, García-Salom M, Tornel J, de Gasparo M, Fenoy FJ.
    Hypertension; 1997 Nov; 30(5):1175-82. PubMed ID: 9369273
    [Abstract] [Full Text] [Related]

  • 18. Systemic Aldosterone, But Not Angiotensin II, Plays a Pivotal Role in the Pathogenesis of Renal Injury in Chronic Nitric Oxide-Deficient Male Rats.
    Suehiro T, Tsuruya K, Ikeda H, Toyonaga J, Yamada S, Noguchi H, Tokumoto M, Kitazono T.
    Endocrinology; 2015 Jul; 156(7):2657-66. PubMed ID: 25872005
    [Abstract] [Full Text] [Related]

  • 19. Effects of renal perfusion pressure on renal interstitial hydrostatic pressure and Na+ excretion: role of endothelium-derived nitric oxide.
    Nakamura T, Alberola AM, Salazar FJ, Saito Y, Kurashina T, Granger JP, Nagai R.
    Nephron; 1998 Jul; 78(1):104-11. PubMed ID: 9453411
    [Abstract] [Full Text] [Related]

  • 20. Role of renal medullary blood flow in the development of L-NAME hypertension in rats.
    Nakanishi K, Mattson DL, Cowley AW.
    Am J Physiol; 1995 Feb; 268(2 Pt 2):R317-23. PubMed ID: 7864223
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.