These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
248 related items for PubMed ID: 9914274
1. Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. Capaday C, Lavoie BA, Barbeau H, Schneider C, Bonnard M. J Neurophysiol; 1999 Jan; 81(1):129-39. PubMed ID: 9914274 [Abstract] [Full Text] [Related]
2. Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans. Lavoie BA, Devanne H, Capaday C. J Neurophysiol; 1997 Jul; 78(1):429-38. PubMed ID: 9242291 [Abstract] [Full Text] [Related]
3. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles. Kido Thompson A, Stein RB. Exp Brain Res; 2004 Dec; 159(4):491-500. PubMed ID: 15243732 [Abstract] [Full Text] [Related]
4. Contributions to the understanding of gait control. Simonsen EB. Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [Abstract] [Full Text] [Related]
5. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking. Ung RV, Imbeault MA, Ethier C, Brizzi L, Capaday C. J Neurophysiol; 2005 Aug; 94(2):1133-42. PubMed ID: 15829598 [Abstract] [Full Text] [Related]
6. Corticospinal input in human gait: modulation of magnetically evoked motor responses. Schubert M, Curt A, Jensen L, Dietz V. Exp Brain Res; 1997 Jun; 115(2):234-46. PubMed ID: 9224852 [Abstract] [Full Text] [Related]
7. Corticospinal excitability during walking in humans with absent and partial body weight support. Knikou M, Hajela N, Mummidisetty CK. Clin Neurophysiol; 2013 Dec; 124(12):2431-8. PubMed ID: 23810634 [Abstract] [Full Text] [Related]
8. Rapid changes in corticospinal excitability during force field adaptation of human walking. Barthélemy D, Alain S, Grey MJ, Nielsen JB, Bouyer LJ. Exp Brain Res; 2012 Mar; 217(1):99-115. PubMed ID: 22246104 [Abstract] [Full Text] [Related]
9. Voluntary activation of ankle muscles is accompanied by subcortical facilitation of their antagonists. Geertsen SS, Zuur AT, Nielsen JB. J Physiol; 2010 Jul 01; 588(Pt 13):2391-402. PubMed ID: 20457734 [Abstract] [Full Text] [Related]
10. Responses of ankle extensor and flexor motoneurons to transcranial magnetic stimulation. Bawa P, Chalmers GR, Stewart H, Eisen AA. J Neurophysiol; 2002 Jul 01; 88(1):124-32. PubMed ID: 12091538 [Abstract] [Full Text] [Related]
11. Modulation of reciprocal inhibition between ankle extensors and flexors during walking in man. Petersen N, Morita H, Nielsen J. J Physiol; 1999 Oct 15; 520 Pt 2(Pt 2):605-19. PubMed ID: 10523426 [Abstract] [Full Text] [Related]
12. Facilitation of corticospinal excitability in the tibialis anterior muscle during robot-assisted passive stepping in humans. Kamibayashi K, Nakajima T, Takahashi M, Akai M, Nakazawa K. Eur J Neurosci; 2009 Jul 15; 30(1):100-9. PubMed ID: 19523098 [Abstract] [Full Text] [Related]
13. Transcranial magnetic stimulation and stretch reflexes in the tibialis anterior muscle during human walking. Christensen LO, Andersen JB, Sinkjaer T, Nielsen J. J Physiol; 2001 Mar 01; 531(Pt 2):545-57. PubMed ID: 11230526 [Abstract] [Full Text] [Related]
14. Short-term effects of functional electrical stimulation on spinal excitatory and inhibitory reflexes in ankle extensor and flexor muscles. Thompson AK, Doran B, Stein RB. Exp Brain Res; 2006 Apr 01; 170(2):216-26. PubMed ID: 16317575 [Abstract] [Full Text] [Related]
15. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles. Perez MA, Lundbye-Jensen J, Nielsen JB. J Neurophysiol; 2007 Dec 01; 98(6):3677-87. PubMed ID: 17942616 [Abstract] [Full Text] [Related]
16. Transspinal stimulation decreases corticospinal excitability and alters the function of spinal locomotor networks. Pulverenti TS, Islam MA, Alsalman O, Murray LM, Harel NY, Knikou M. J Neurophysiol; 2019 Dec 01; 122(6):2331-2343. PubMed ID: 31577515 [Abstract] [Full Text] [Related]
17. Timing of cortical excitability changes during the reaction time of movements superimposed on tonic motor activity. Schneider C, Lavoie BA, Barbeau H, Capaday C. J Appl Physiol (1985); 2004 Dec 01; 97(6):2220-7. PubMed ID: 15531574 [Abstract] [Full Text] [Related]
18. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking. Iglesias C, Nielsen JB, Marchand-Pauvert V. Eur J Neurosci; 2008 Oct 01; 28(7):1351-61. PubMed ID: 18973562 [Abstract] [Full Text] [Related]
19. Stumbling reactions in man: influence of corticospinal input. Keck ME, Pijnappels M, Schubert M, Colombo G, Curt A, Dietz V. Electroencephalogr Clin Neurophysiol; 1998 Jun 01; 109(3):215-23. PubMed ID: 9741787 [Abstract] [Full Text] [Related]
20. Cortical control of human soleus muscle during volitional and postural activities studied using focal magnetic stimulation. Lavoie BA, Cody FW, Capaday C. Exp Brain Res; 1995 Jun 01; 103(1):97-107. PubMed ID: 7615042 [Abstract] [Full Text] [Related] Page: [Next] [New Search]