These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


400 related items for PubMed ID: 9920342

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Age dependence of freezable and nonfreezable water content of normal human lenses.
    Lahm D, Lee LK, Bettelheim FA.
    Invest Ophthalmol Vis Sci; 1985 Aug; 26(8):1162-5. PubMed ID: 4019108
    [Abstract] [Full Text] [Related]

  • 5. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase.
    Molnár GA, Nemes V, Biró Z, Ludány A, Wagner Z, Wittmann I.
    Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866
    [Abstract] [Full Text] [Related]

  • 6. Pressure-induced syneretic response in rhesus monkey lenses.
    Bettelheim FA, Zigler JS.
    Invest Ophthalmol Vis Sci; 1999 May; 40(6):1285-8. PubMed ID: 10235567
    [Abstract] [Full Text] [Related]

  • 7. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V, McCall S, Huynh S, Srivastava K, Srivastava OP.
    Mol Vis; 2004 Jul 19; 10():476-89. PubMed ID: 15303090
    [Abstract] [Full Text] [Related]

  • 8. Lens hydration in transgenic mice containing HIV-1 protease linked to the lens alpha A-crystallin promoter.
    Bettelheim FA, Zeng FF, Bia Y, Tumminia SJ, Russell P.
    Arch Biochem Biophys; 1995 Dec 20; 324(2):223-7. PubMed ID: 8554313
    [Abstract] [Full Text] [Related]

  • 9. Increased content of zinc and iron in human cataractous lenses.
    Dawczynski J, Blum M, Winnefeld K, Strobel J.
    Biol Trace Elem Res; 2002 Dec 20; 90(1-3):15-23. PubMed ID: 12666821
    [Abstract] [Full Text] [Related]

  • 10. Protein oxidation and lens opacity in humans.
    Boscia F, Grattagliano I, Vendemiale G, Micelli-Ferrari T, Altomare E.
    Invest Ophthalmol Vis Sci; 2000 Aug 20; 41(9):2461-5. PubMed ID: 10937554
    [Abstract] [Full Text] [Related]

  • 11. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K, Chaves JM, Srivastava OP, Kirk M.
    Exp Eye Res; 2008 Oct 20; 87(4):356-66. PubMed ID: 18662688
    [Abstract] [Full Text] [Related]

  • 12. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract.
    Sweeney MH, Truscott RJ.
    Exp Eye Res; 1998 Nov 20; 67(5):587-95. PubMed ID: 9878221
    [Abstract] [Full Text] [Related]

  • 13. Raman study of the lenses of spontaneously-occurring and streptozotocin-induced diabetic rats.
    Toshima S, Miyazaki H, Mizuno A.
    Jpn J Ophthalmol; 1990 Nov 20; 34(4):436-41. PubMed ID: 2150537
    [Abstract] [Full Text] [Related]

  • 14. Protein carbonylation and glycation in human lenses.
    Balog Z, Klepac R, Sikić J, Jukić-Lesina T.
    Coll Antropol; 2001 Nov 20; 25 Suppl():145-8. PubMed ID: 11817006
    [Abstract] [Full Text] [Related]

  • 15. Methylglyoxal-derived modifications in lens aging and cataract formation.
    Shamsi FA, Lin K, Sady C, Nagaraj RH.
    Invest Ophthalmol Vis Sci; 1998 Nov 20; 39(12):2355-64. PubMed ID: 9804144
    [Abstract] [Full Text] [Related]

  • 16. The lens in diabetes.
    Bron AJ, Sparrow J, Brown NA, Harding JJ, Blakytny R.
    Eye (Lond); 1993 Nov 20; 7 ( Pt 2)():260-75. PubMed ID: 7607346
    [Abstract] [Full Text] [Related]

  • 17. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P, Saxena AK, Cui XL, Obrenovich M, Gudipaty K, Monnier VM.
    Invest Ophthalmol Vis Sci; 2000 May 20; 41(6):1473-81. PubMed ID: 10798665
    [Abstract] [Full Text] [Related]

  • 18. The sorbitol pathway in the human lens: aldose reductase and polyol dehydrogenase.
    Jedziniak JA, Chylack LT, Cheng HM, Gillis MK, Kalustian AA, Tung WH.
    Invest Ophthalmol Vis Sci; 1981 Mar 20; 20(3):314-26. PubMed ID: 6782033
    [Abstract] [Full Text] [Related]

  • 19. A transgenic animal model of osmotic cataract. Part 1: over-expression of bovine Na+/myo-inositol cotransporter in lens fibers.
    Cammarata PR, Zhou C, Chen G, Singh I, Reeves RE, Kuszak JR, Robinson ML.
    Invest Ophthalmol Vis Sci; 1999 Jul 20; 40(8):1727-37. PubMed ID: 10393042
    [Abstract] [Full Text] [Related]

  • 20. Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts.
    Yan H, Lou MF, Fernando MR, Harding JJ.
    Mol Vis; 2006 Oct 02; 12():1153-9. PubMed ID: 17093401
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.