These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 9920463
1. The effect of the flavonoids, quercetin, myricetin and epicatechin on the growth and enzyme activities of MCF7 human breast cancer cells. Rodgers EH, Grant MH. Chem Biol Interact; 1998 Nov 27; 116(3):213-28. PubMed ID: 9920463 [Abstract] [Full Text] [Related]
2. The activity of xenobiotic enzymes and the cytotoxicity of mitoxantrone in MCF 7 human breast cancer cells treated with inducing agents. Li SJ, Rodgers EH, Grant MH. Chem Biol Interact; 1995 Jul 14; 97(2):101-18. PubMed ID: 7541730 [Abstract] [Full Text] [Related]
3. The effect of dietary flavonoids on DNA damage (strand breaks and oxidised pyrimdines) and growth in human cells. Duthie SJ, Johnson W, Dobson VL. Mutat Res; 1997 Apr 24; 390(1-2):141-51. PubMed ID: 9150762 [Abstract] [Full Text] [Related]
4. Effects of flavonoids on cytochrome P450-dependent acetaminophen metabolism in rats and human liver microsomes. Li Y, Wang E, Patten CJ, Chen L, Yang CS. Drug Metab Dispos; 1994 Apr 24; 22(4):566-71. PubMed ID: 7956731 [Abstract] [Full Text] [Related]
5. Structural requirements for the flavonoid-mediated modulation of glutathione S-transferase P1-1 and GS-X pump activity in MCF7 breast cancer cells. van Zanden JJ, Geraets L, Wortelboer HM, van Bladeren PJ, Rietjens IM, Cnubben NH. Biochem Pharmacol; 2004 Apr 15; 67(8):1607-17. PubMed ID: 15041478 [Abstract] [Full Text] [Related]
6. Myricetin, quercetin, (+)-catechin and (-)-epicatechin protect against N-nitrosamines-induced DNA damage in human hepatoma cells. Delgado ME, Haza AI, García A, Morales P. Toxicol In Vitro; 2009 Oct 15; 23(7):1292-7. PubMed ID: 19628030 [Abstract] [Full Text] [Related]
7. In vitro effects of myricetin, morin, apigenin, (+)-taxifolin, (+)-catechin, (-)-epicatechin, naringenin and naringin on cytochrome b5 reduction by purified NADH-cytochrome b5 reductase. Çelik H, Koşar M, Arinç E. Toxicology; 2013 Jun 07; 308():34-40. PubMed ID: 23567315 [Abstract] [Full Text] [Related]
8. Differential effects of dietary flavonoids on reactive oxygen and nitrogen species generation and changes in antioxidant enzyme expression induced by proinflammatory cytokines in Chang Liver cells. Crespo I, García-Mediavilla MV, Almar M, González P, Tuñón MJ, Sánchez-Campos S, González-Gallego J. Food Chem Toxicol; 2008 May 07; 46(5):1555-69. PubMed ID: 18234413 [Abstract] [Full Text] [Related]
9. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Bruggisser R, von Daeniken K, Jundt G, Schaffner W, Tullberg-Reinert H. Planta Med; 2002 May 07; 68(5):445-8. PubMed ID: 12058323 [Abstract] [Full Text] [Related]
10. Inhibition of DT-diaphorase (NAD(P)H:quinone oxidoreductase, EC 1.6.99.2) by 5,6-dimethylxanthenone-4-acetic acid (DMXAA) and flavone-8-acetic acid (FAA): implications for bioreductive drug development. Phillips RM. Biochem Pharmacol; 1999 Jul 15; 58(2):303-10. PubMed ID: 10423172 [Abstract] [Full Text] [Related]
11. Reduction of cisplatin toxicity in cultured renal tubular cells by the bioflavonoid quercetin. Kuhlmann MK, Horsch E, Burkhardt G, Wagner M, Köhler H. Arch Toxicol; 1998 Jul 15; 72(8):536-40. PubMed ID: 9765070 [Abstract] [Full Text] [Related]
12. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. So FV, Guthrie N, Chambers AF, Moussa M, Carroll KK. Nutr Cancer; 1996 Jul 15; 26(2):167-81. PubMed ID: 8875554 [Abstract] [Full Text] [Related]
13. Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and atpase activities by interaction with dietary flavonoids. Leslie EM, Mao Q, Oleschuk CJ, Deeley RG, Cole SP. Mol Pharmacol; 2001 May 15; 59(5):1171-80. PubMed ID: 11306701 [Abstract] [Full Text] [Related]
14. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Morel I, Lescoat G, Cogrel P, Sergent O, Pasdeloup N, Brissot P, Cillard P, Cillard J. Biochem Pharmacol; 1993 Jan 07; 45(1):13-9. PubMed ID: 8424806 [Abstract] [Full Text] [Related]
15. The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase. Fourie J, Oleschuk CJ, Guziec F, Guziec L, Fiterman DJ, Monterrosa C, Begleiter A. Cancer Chemother Pharmacol; 2002 Feb 07; 49(2):101-10. PubMed ID: 11862423 [Abstract] [Full Text] [Related]
16. Effect of quercetin, genistein and kaempferol on glutathione and glutathione-redox cycle enzymes in 3T3-L1 preadipocytes. Boadi WY, Amartey PK, Lo A. Drug Chem Toxicol; 2016 Feb 07; 39(3):239-47. PubMed ID: 27063963 [Abstract] [Full Text] [Related]
17. Comparative effects of flavonoids and model inducers on drug-metabolizing enzymes in rat liver. Canivenc-Lavier MC, Vernevaut MF, Totis M, Siess MH, Magdalou J, Suschetet M. Toxicology; 1996 Nov 15; 114(1):19-27. PubMed ID: 8931757 [Abstract] [Full Text] [Related]
18. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Huang YT, Hwang JJ, Lee PP, Ke FC, Huang JH, Huang CJ, Kandaswami C, Middleton E, Lee MT. Br J Pharmacol; 1999 Nov 15; 128(5):999-1010. PubMed ID: 10556937 [Abstract] [Full Text] [Related]
19. Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidised pyrimidines) in human lymphocytes. Duthie SJ, Collins AR, Duthie GG, Dobson VL. Mutat Res; 1997 Oct 24; 393(3):223-31. PubMed ID: 9393615 [Abstract] [Full Text] [Related]
20. In vitro exposure to quercetin and genistein alters lipid peroxides and prevents the loss of glutathione in human progenitor mononuclear (U937) cells. Boadi WY, Iyere PA, Adunyah SE. J Appl Toxicol; 2005 Oct 24; 25(1):82-8. PubMed ID: 15669027 [Abstract] [Full Text] [Related] Page: [Next] [New Search]