These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
133 related items for PubMed ID: 9952008
1. Evaluation of a physiologic pulsatile pump system for neonate-infant cardiopulmonary bypass support. Undar A, Masai T, Inman R, Beyer EA, Mueller MA, McGarry MC, Frazier OH, Fraser CD. ASAIO J; 1999; 45(1):53-8. PubMed ID: 9952008 [Abstract] [Full Text] [Related]
2. The type of aortic cannula and membrane oxygenator affect the pulsatile waveform morphology produced by a neonate-infant cardiopulmonary bypass system in vivo. Undar A, Lodge AJ, Daggett CW, Runge TM, Ungerleider RM, Calhoon JH. Artif Organs; 1998 Aug; 22(8):681-6. PubMed ID: 9702320 [Abstract] [Full Text] [Related]
3. Precise quantification of pulsatility is a necessity for direct comparisons of six different pediatric heart-lung machines in a neonatal CPB model. Undar A, Eichstaedt HC, Masai T, Bigley JE, Kunselman AR. ASAIO J; 2005 Aug; 51(5):600-3. PubMed ID: 16322724 [Abstract] [Full Text] [Related]
4. The effects of pulsatile versus nonpulsatile perfusion on blood viscoelasticity before and after deep hypothermic circulatory arrest in a neonatal piglet model. Undar A, Henderson N, Thurston GB, Masai T, Beyer EA, Frazier OH, Fraser CD. Artif Organs; 1999 Aug; 23(8):717-21. PubMed ID: 10463495 [Abstract] [Full Text] [Related]
5. Design and performance of a physiologic pulsatile flow neonate-infant cardiopulmonary bypass system. Undar A, Lodge AJ, Runge TM, Daggett CW, Ungerleider RM, Calhoon JH. ASAIO J; 1996 Aug; 42(5):M580-3. PubMed ID: 8944947 [Abstract] [Full Text] [Related]
6. Pulsatile and nonpulsatile flows can be quantified in terms of energy equivalent pressure during cardiopulmonary bypass for direct comparisons. Undar A, Masai T, Frazier OH, Fraser CD. ASAIO J; 1999 Aug; 45(6):610-4. PubMed ID: 10593694 [Abstract] [Full Text] [Related]
7. Global and regional cerebral blood flow in neonatal piglets undergoing pulsatile cardiopulmonary bypass with continuous perfusion at 25 degrees C and circulatory arrest at 18 degrees C. Undar A, Masai T, Yang SQ, Eichstaedt HC, McGarry MC, Vaughn WK, Goddard-Finegold J, Fraser CD. Perfusion; 2001 Nov; 16(6):503-10. PubMed ID: 11761090 [Abstract] [Full Text] [Related]
9. Pulsatile perfusion improves regional myocardial blood flow during and after hypothermic cardiopulmonary bypass in a neonatal piglet model. Undar A, Masai T, Yang SQ, Eichstaedt HC, McGarry MC, Vaughn WK, Fraser CD. ASAIO J; 2002 Jan; 48(1):90-5. PubMed ID: 11814104 [Abstract] [Full Text] [Related]
10. Effects of perfusion mode on regional and global organ blood flow in a neonatal piglet model. Undar A, Masai T, Yang SQ, Goddard-Finegold J, Frazier OH, Fraser CD. Ann Thorac Surg; 1999 Oct; 68(4):1336-42; discussion 1342-3. PubMed ID: 10543503 [Abstract] [Full Text] [Related]
11. Monitoring regional cerebral oxygen saturation using near-infrared spectroscopy during pulsatile hypothermic cardiopulmonary bypass in a neonatal piglet model. Undar A, Eichstaedt HC, Frazier OH, Fraser CD. ASAIO J; 2000 Oct; 46(1):103-6. PubMed ID: 10667726 [Abstract] [Full Text] [Related]
12. Evaluation of different diameter arterial tubing and arterial cannulae in simulated neonatal/pediatric cardiopulmonary bypass circuits. Wang S, Rosenthal T, Kunselman AR, Ündar A. Artif Organs; 2015 Jan; 39(1):43-52. PubMed ID: 25626579 [Abstract] [Full Text] [Related]
13. Pediatric physiologic pulsatile pump enhances cerebral and renal blood flow during and after cardiopulmonary bypass. Undar A, Masai T, Beyer EA, Goddard-Finegold J, McGarry MC, Fraser CD. Artif Organs; 2002 Nov; 26(11):919-23. PubMed ID: 12406143 [Abstract] [Full Text] [Related]
14. Quantification of pulsatile flow during cardiopulmonary bypass to permit direct comparison of the effectiveness of various types of "pulsatile" and "nonpulsatile" flow. Grossi EA, Connolly MW, Krieger KH, Nathan IM, Hunter CE, Colvin SB, Baumann FG, Spencer FC. Surgery; 1985 Sep; 98(3):547-54. PubMed ID: 4035575 [Abstract] [Full Text] [Related]
15. Applications of the pulsatile flow versatile ECLS: in vivo studies. Rho YR, Choi H, Lee JC, Choi SW, Chung YM, Lee HS, Hwang CM, Lee HS, Ahn SS, Lee RY, Son HS, Choi MJ, Baek KJ, Kim JS, Suh GJ, Won YS, Sun K, Min BG. Int J Artif Organs; 2003 May; 26(5):428-35. PubMed ID: 12828310 [Abstract] [Full Text] [Related]
16. A novel augmented venous-drainage model of cardiopulmonary bypass for deep hypothermic circulatory arrest without blood priming. Jiang X, Gu T, Liu Y, Wang C, Shi E, Zhang G. Perfusion; 2018 May; 33(4):297-302. PubMed ID: 29258403 [Abstract] [Full Text] [Related]
17. Testing neonate-infant membrane oxygenators with the University of Texas neonatal pulsatile cardiopulmonary bypass system in vitro. Undar A, Holland MC, Howelton RV, Benson CK, Ybarra JR, Miller OL, Rossbach MM, Runge TM, Johnson SB, Sako EY, Calhoon JH. Perfusion; 1998 Sep; 13(5):346-52. PubMed ID: 9778720 [Abstract] [Full Text] [Related]
18. Microvascular fluid exchange during pulsatile cardiopulmonary bypass perfusion with the combined use of a nonpulsatile pump and intra-aortic balloon pump. Lundemoen S, Kvalheim VL, Mongstad A, Andersen KS, Grong K, Husby P. J Thorac Cardiovasc Surg; 2013 Nov; 146(5):1275-82. PubMed ID: 23906371 [Abstract] [Full Text] [Related]
19. Augmentation of abdominal organ perfusion during cardiopulmonary bypass with a novel intra-aortic pulsatile catheter pump. Gu YJ, De Kroon TL, Elstrodt JM, van Oeveren W, Boonstra PW, Rakhorst G. Int J Artif Organs; 2005 Jan; 28(1):35-43. PubMed ID: 15742308 [Abstract] [Full Text] [Related]
20. Clinical evaluation of pulsatile flow mode of Terumo Capiox centrifugal pump. Nishida H, Uesugi H, Nishinaka T, Uwabe K, Aomi S, Endo M, Koyanagi H, Oshiyama H, Nogawa A, Akutsu T. Artif Organs; 1997 Jul; 21(7):816-21. PubMed ID: 9212965 [Abstract] [Full Text] [Related] Page: [Next] [New Search]