These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 9973362

  • 1. sn-glycerol-1-phosphate-forming activities in Archaea: separation of archaeal phospholipid biosynthesis and glycerol catabolism by glycerophosphate enantiomers.
    Nishihara M, Yamazaki T, Oshima T, Koga Y.
    J Bacteriol; 1999 Feb; 181(4):1330-3. PubMed ID: 9973362
    [Abstract] [Full Text] [Related]

  • 2. sn-glycerol-1-phosphate dehydrogenase in Methanobacterium thermoautotrophicum: key enzyme in biosynthesis of the enantiomeric glycerophosphate backbone of ether phospholipids of archaebacteria.
    Nishihara M, Koga Y.
    J Biochem; 1995 May; 117(5):933-5. PubMed ID: 8586635
    [Abstract] [Full Text] [Related]

  • 3. Purification and properties of sn-glycerol-1-phosphate dehydrogenase from Methanobacterium thermoautotrophicum: characterization of the biosynthetic enzyme for the enantiomeric glycerophosphate backbone of ether polar lipids of Archaea.
    Nishihara M, Koga Y.
    J Biochem; 1997 Sep; 122(3):572-6. PubMed ID: 9348086
    [Abstract] [Full Text] [Related]

  • 4. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent.
    Koga Y, Kyuragi T, Nishihara M, Sone N.
    J Mol Evol; 1998 Jan; 46(1):54-63. PubMed ID: 9419225
    [Abstract] [Full Text] [Related]

  • 5. Selective changes in enzymes of the sn-glycerol 3-phosphate and dihydroxyacetone-phosphate pathways of triacylglycerol biosynthesis during differentiation of 3T3-L1 preadipocytes.
    Coleman RA, Bell RM.
    J Biol Chem; 1980 Aug 25; 255(16):7681-7. PubMed ID: 6156941
    [Abstract] [Full Text] [Related]

  • 6. Transfer of pro-R hydrogen from NADH to dihydroxyacetonephosphate by sn-glycerol-1-phosphate dehydrogenase from the archaeon Methanothermobacter thermautotrophicus.
    Koga Y, Sone N, Noguchi S, Morii H.
    Biosci Biotechnol Biochem; 2003 Jul 25; 67(7):1605-8. PubMed ID: 12913312
    [Abstract] [Full Text] [Related]

  • 7. Rickettsia prowazekii uses an sn-glycerol-3-phosphate dehydrogenase and a novel dihydroxyacetone phosphate transport system to supply triose phosphate for phospholipid biosynthesis.
    Frohlich KM, Roberts RA, Housley NA, Audia JP.
    J Bacteriol; 2010 Sep 25; 192(17):4281-8. PubMed ID: 20581209
    [Abstract] [Full Text] [Related]

  • 8. Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae.
    Athenstaedt K, Weys S, Paltauf F, Daum G.
    J Bacteriol; 1999 Mar 25; 181(5):1458-63. PubMed ID: 10049376
    [Abstract] [Full Text] [Related]

  • 9. Biosynthesis in Escherichia coli of sn-glycerol 3-phosphate, a precursor of phospholipid. Kinetic characterization of wild type and feedback-resistant forms of the biosynthetic sn-glycerol-3-phosphate dehydrogenase.
    Edgar JR, Bell RM.
    J Biol Chem; 1978 Sep 25; 253(18):6354-63. PubMed ID: 28326
    [Abstract] [Full Text] [Related]

  • 10. Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans.
    Fillinger S, Ruijter G, Tamás MJ, Visser J, Thevelein JM, d'Enfert C.
    Mol Microbiol; 2001 Jan 25; 39(1):145-57. PubMed ID: 11123696
    [Abstract] [Full Text] [Related]

  • 11. Glycerol dissimilation in Rhodopseudomonas sphaeroides.
    Pike L, Sojka GA.
    J Bacteriol; 1975 Dec 25; 124(3):1101-5. PubMed ID: 1081535
    [Abstract] [Full Text] [Related]

  • 12. Properties of the enzymes catalyzing the biosynthesis of lysophosphatidate and its ether analog in cultured fibroblasts from Zellweger syndrome patients and normal controls.
    Webber KO, Datta NS, Hajra AK.
    Arch Biochem Biophys; 1987 May 01; 254(2):611-20. PubMed ID: 3646870
    [Abstract] [Full Text] [Related]

  • 13. [PECULIARITIES OF GLUCOSE AND GLYCEROL METABOLISM IN Nocardia vaccinii IMB B-7405].
    Pirog TP, Shevchuk TA, Beregova KA, Kudrya NV.
    Ukr Biochem J; 2015 May 01; 87(2):66-75. PubMed ID: 26255340
    [Abstract] [Full Text] [Related]

  • 14. Phosphorylation of glycerol and dihydroxyacetone in Acetobacter xylinum and its possible regulatory role.
    Weinhouse H, Benziman M.
    J Bacteriol; 1976 Aug 01; 127(2):747-54. PubMed ID: 956117
    [Abstract] [Full Text] [Related]

  • 15. alpha-Glycerophosphate and dihydroxyacetone phosphate metabolism in rats fed high-fat or high-sucrose diets.
    Molaparast-Shahidsaless F, Shrago E, Elson CE.
    J Nutr; 1979 Sep 01; 109(9):1560-9. PubMed ID: 479951
    [No Abstract] [Full Text] [Related]

  • 16. [Changes in enzyme systems and lipogenesis metabolites in experimental tuberculosis].
    Karegezian KG, Safarian MD.
    Biull Eksp Biol Med; 1990 Dec 01; 110(12):600-2. PubMed ID: 2083358
    [Abstract] [Full Text] [Related]

  • 17. Glycerol-stimulated proinsulin biosynthesis in isolated pancreatic rat islets via adenoviral-induced expression of glycerol kinase is mediated via mitochondrial metabolism.
    Skelly RH, Wicksteed B, Antinozzi PA, Rhodes CJ.
    Diabetes; 2001 Aug 01; 50(8):1791-8. PubMed ID: 11473040
    [Abstract] [Full Text] [Related]

  • 18. The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis.
    Chen M, Thelen JJ.
    Plant Cell; 2010 Jan 01; 22(1):77-90. PubMed ID: 20097871
    [Abstract] [Full Text] [Related]

  • 19. Proceedings: Factors affecting glycerol and dihydroxyacetone phosphorylation in Acetobacter xylinum.
    Weinhouse H, Benziman M.
    Isr J Med Sci; 1975 Nov 01; 11(11):1179-80. PubMed ID: 173674
    [No Abstract] [Full Text] [Related]

  • 20. Sugar analog synthesis by in vitro biocatalytic cascade: A comparison of alternative enzyme complements for dihydroxyacetone phosphate production as a precursor to rare chiral sugar synthesis.
    Hartley CJ, French NG, Scoble JA, Williams CC, Churches QI, Frazer AR, Taylor MC, Coia G, Simpson G, Turner NJ, Scott C.
    PLoS One; 2017 Nov 01; 12(11):e0184183. PubMed ID: 29112947
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.