These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


256 related items for PubMed ID: 9987118

  • 1. On the mechanism of FtsH-dependent degradation of the sigma 32 transcriptional regulator of Escherichia coli and the role of the Dnak chaperone machine.
    Blaszczak A, Georgopoulos C, Liberek K.
    Mol Microbiol; 1999 Jan; 31(1):157-66. PubMed ID: 9987118
    [Abstract] [Full Text] [Related]

  • 2. The C terminus of sigma(32) is not essential for degradation by FtsH.
    Tomoyasu T, Arsène F, Ogura T, Bukau B.
    J Bacteriol; 2001 Oct; 183(20):5911-7. PubMed ID: 11566990
    [Abstract] [Full Text] [Related]

  • 3. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32.
    Arsène F, Tomoyasu T, Mogk A, Schirra C, Schulze-Specking A, Bukau B.
    J Bacteriol; 1999 Jun; 181(11):3552-61. PubMed ID: 10348869
    [Abstract] [Full Text] [Related]

  • 4. Evidence for an active role of the DnaK chaperone system in the degradation of sigma(32).
    Tatsuta T, Joob DM, Calendar R, Akiyama Y, Ogura T.
    FEBS Lett; 2000 Aug 04; 478(3):271-5. PubMed ID: 10930581
    [Abstract] [Full Text] [Related]

  • 5. Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease.
    Urech C, Koby S, Oppenheim AB, Münchbach M, Hennecke H, Narberhaus F.
    Eur J Biochem; 2000 Aug 04; 267(15):4831-9. PubMed ID: 10903518
    [Abstract] [Full Text] [Related]

  • 6. Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability: implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function.
    Suzuki H, Ikeda A, Tsuchimoto S, Adachi K, Noguchi A, Fukumori Y, Kanemori M.
    J Biol Chem; 2012 Jun 01; 287(23):19275-83. PubMed ID: 22496372
    [Abstract] [Full Text] [Related]

  • 7. Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is necessary but not sufficient for degradation by the FtsH protease.
    Obrist M, Milek S, Klauck E, Hengge R, Narberhaus F.
    Microbiology (Reading); 2007 Aug 01; 153(Pt 8):2560-2571. PubMed ID: 17660420
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the sigma 32 heat shock transcriptional regulator.
    Liberek K, Wall D, Georgopoulos C.
    Proc Natl Acad Sci U S A; 1995 Jul 03; 92(14):6224-8. PubMed ID: 7603976
    [Abstract] [Full Text] [Related]

  • 12. An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease.
    Bertani D, Oppenheim AB, Narberhaus F.
    FEBS Lett; 2001 Mar 23; 493(1):17-20. PubMed ID: 11277997
    [Abstract] [Full Text] [Related]

  • 13. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32.
    Tomoyasu T, Gamer J, Bukau B, Kanemori M, Mori H, Rutman AJ, Oppenheim AB, Yura T, Yamanaka K, Niki H.
    EMBO J; 1995 Jun 01; 14(11):2551-60. PubMed ID: 7781608
    [Abstract] [Full Text] [Related]

  • 14. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo.
    Tatsuta T, Tomoyasu T, Bukau B, Kitagawa M, Mori H, Karata K, Ogura T.
    Mol Microbiol; 1998 Nov 01; 30(3):583-93. PubMed ID: 9822823
    [Abstract] [Full Text] [Related]

  • 15. BAH1 an E3 Ligase from Arabidopsis thaliana Stabilizes Heat Shock Factor σ32 of Escherichia coli by Interacting with DnaK/DnaJ Chaperone Team.
    Xu X, Liang K, Niu Y, Shen Y, Wan X, Li H, Yang Y.
    Curr Microbiol; 2018 Apr 01; 75(4):450-455. PubMed ID: 29260303
    [Abstract] [Full Text] [Related]

  • 16. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.
    Zhang H, Yang J, Wu S, Gong W, Chen C, Perrett S.
    J Biol Chem; 2016 Mar 25; 291(13):6967-81. PubMed ID: 26823468
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB.
    Herman C, Thévenet D, D'Ari R, Bouloc P.
    Proc Natl Acad Sci U S A; 1995 Apr 11; 92(8):3516-20. PubMed ID: 7724592
    [Abstract] [Full Text] [Related]

  • 20. Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between sigma 70 and sigma 32 factors assembled with RNA polymerase.
    Blaszczak A, Zylicz M, Georgopoulos C, Liberek K.
    EMBO J; 1995 Oct 16; 14(20):5085-93. PubMed ID: 7588636
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.