These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


2785 related items for PubMed ID: 9988500

  • 21. Isavuconazole, micafungin, and 8 comparator antifungal agents' susceptibility profiles for common and uncommon opportunistic fungi collected in 2013: temporal analysis of antifungal drug resistance using CLSI species-specific clinical breakpoints and proposed epidemiological cutoff values.
    Pfaller MA, Rhomberg PR, Messer SA, Jones RN, Castanheira M.
    Diagn Microbiol Infect Dis; 2015 Aug; 82(4):303-13. PubMed ID: 25986029
    [Abstract] [Full Text] [Related]

  • 22. Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases.
    Richter SS, Galask RP, Messer SA, Hollis RJ, Diekema DJ, Pfaller MA.
    J Clin Microbiol; 2005 May; 43(5):2155-62. PubMed ID: 15872235
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Increased expression and hotspot mutations of the multidrug efflux transporter, CDR1 in azole-resistant Candida albicans isolates from vaginitis patients.
    Looi CY, D' Silva EC, Seow HF, Rosli R, Ng KP, Chong PP.
    FEMS Microbiol Lett; 2005 Aug 15; 249(2):283-9. PubMed ID: 16006060
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Intrinsic in vitro susceptibility of primary clinical isolates of Aspergillus fumigatus, Aspergillus terreus, Aspergillus nidulans, Candida albicans and Candida lusitaniae against amphotericin B.
    Singh J, Rimek D, Kappe R.
    Mycoses; 2006 Mar 15; 49(2):96-103. PubMed ID: 16466441
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
    Vermitsky JP, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD.
    Mol Microbiol; 2006 Aug 15; 61(3):704-22. PubMed ID: 16803598
    [Abstract] [Full Text] [Related]

  • 29. In vitro and in vivo activity of tea tree oil against azole-susceptible and -resistant human pathogenic yeasts.
    Mondello F, De Bernardis F, Girolamo A, Salvatore G, Cassone A.
    J Antimicrob Chemother; 2003 May 15; 51(5):1223-9. PubMed ID: 12668571
    [Abstract] [Full Text] [Related]

  • 30. RTA2, a novel gene involved in azole resistance in Candida albicans.
    Jia XM, Ma ZP, Jia Y, Gao PH, Zhang JD, Wang Y, Xu YG, Wang L, Cao YY, Cao YB, Zhang LX, Jiang YY.
    Biochem Biophys Res Commun; 2008 Sep 05; 373(4):631-6. PubMed ID: 18601908
    [Abstract] [Full Text] [Related]

  • 31. [In vitro resistance to fluconazole and itraconazole in clinical isolates of Candida spp and Cryptococcus neoformans].
    Carrillo Muñoz AJ, Tur C, Estivill D, Montsant L, Carceller A, Hernández-Molina JM, Torres Rodríguez JM.
    Rev Iberoam Micol; 1997 Jun 05; 14(2):50-4. PubMed ID: 16854170
    [Abstract] [Full Text] [Related]

  • 32. Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents.
    Sanglard D, Ischer F, Koymans L, Bille J.
    Antimicrob Agents Chemother; 1998 Feb 05; 42(2):241-53. PubMed ID: 9527767
    [Abstract] [Full Text] [Related]

  • 33. Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic and temporal trends of antifungal resistance.
    Pfaller MA, Messer SA, Woosley LN, Jones RN, Castanheira M.
    J Clin Microbiol; 2013 Aug 05; 51(8):2571-81. PubMed ID: 23720791
    [Abstract] [Full Text] [Related]

  • 34. [Investigation of the expression levels of efflux pumps in fluconazole-resistant Candida albicans isolates].
    Gulat S, Doluca Dereli M.
    Mikrobiyol Bul; 2014 Apr 05; 48(2):325-34. PubMed ID: 24819270
    [Abstract] [Full Text] [Related]

  • 35. Antifungal susceptibility patterns of a global collection of fungal isolates: results of the SENTRY Antifungal Surveillance Program (2013).
    Castanheira M, Messer SA, Rhomberg PR, Pfaller MA.
    Diagn Microbiol Infect Dis; 2016 Jun 05; 85(2):200-4. PubMed ID: 27061369
    [Abstract] [Full Text] [Related]

  • 36. Resistance mechanisms in fluconazole-resistant Candida albicans isolates from vaginal candidiasis.
    Cernicka J, Subik J.
    Int J Antimicrob Agents; 2006 May 05; 27(5):403-8. PubMed ID: 16621465
    [Abstract] [Full Text] [Related]

  • 37. In vitro susceptibility of 245 yeast isolates to amphotericin B, 5-fluorocytosine, ketoconazole, fluconazole and itraconazole.
    Martín E, Parras P, Lozano MC.
    Chemotherapy; 1992 May 05; 38(5):335-9. PubMed ID: 1337508
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Mechanisms of resistance to fluconazole in Candida albicans clinical isolates from Iranian HIV-infected patients with oropharyngeal candidiasis.
    Salari S, Khosravi AR, Mousavi SA, Nikbakht-Brojeni GH.
    J Mycol Med; 2016 Mar 05; 26(1):35-41. PubMed ID: 26627124
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 140.