BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 11266437)

  • 1. Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the efficiency of transcriptional elongation.
    Lee DK; Duan HO; Chang C
    J Biol Chem; 2001 Mar; 276(13):9978-84. PubMed ID: 11266437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular communication between androgen receptor and general transcription machinery.
    Lee DK; Chang C
    J Steroid Biochem Mol Biol; 2003 Jan; 84(1):41-9. PubMed ID: 12648523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From androgen receptor to the general transcription factor TFIIH. Identification of cdk activating kinase (CAK) as an androgen receptor NH(2)-terminal associated coactivator.
    Lee DK; Duan HO; Chang C
    J Biol Chem; 2000 Mar; 275(13):9308-13. PubMed ID: 10734072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tat activates human immunodeficiency virus type 1 transcriptional elongation independent of TFIIH kinase.
    Chen D; Zhou Q
    Mol Cell Biol; 1999 Apr; 19(4):2863-71. PubMed ID: 10082552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The second largest subunit of RNA polymerase II interacts with and enhances transactivation of androgen receptor.
    Lee DK; Li M; Chang C
    Biochem Biophys Res Commun; 2003 Feb; 302(1):162-9. PubMed ID: 12593864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro.
    Wada T; Takagi T; Yamaguchi Y; Watanabe D; Handa H
    EMBO J; 1998 Dec; 17(24):7395-403. PubMed ID: 9857195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct evidence that HIV-1 Tat stimulates RNA polymerase II carboxyl-terminal domain hyperphosphorylation during transcriptional elongation.
    Isel C; Karn J
    J Mol Biol; 1999 Jul; 290(5):929-41. PubMed ID: 10438593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription.
    Zhou M; Nekhai S; Bharucha DC; Kumar A; Ge H; Price DH; Egly JM; Brady JN
    J Biol Chem; 2001 Nov; 276(48):44633-40. PubMed ID: 11572868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a cyclin subunit required for the function of Drosophila P-TEFb.
    Peng J; Marshall NF; Price DH
    J Biol Chem; 1998 May; 273(22):13855-60. PubMed ID: 9593731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription.
    Zhou M; Halanski MA; Radonovich MF; Kashanchi F; Peng J; Price DH; Brady JN
    Mol Cell Biol; 2000 Jul; 20(14):5077-86. PubMed ID: 10866664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domains in the SPT5 protein that modulate its transcriptional regulatory properties.
    Ivanov D; Kwak YT; Guo J; Gaynor RB
    Mol Cell Biol; 2000 May; 20(9):2970-83. PubMed ID: 10757782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transcriptional elongation inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits transcription factor IIH-associated protein kinase.
    Yankulov K; Yamashita K; Roy R; Egly JM; Bentley DL
    J Biol Chem; 1995 Oct; 270(41):23922-5. PubMed ID: 7592583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent transcription.
    Hoque M; Young TM; Lee CG; Serrero G; Mathews MB; Pe'ery T
    Mol Cell Biol; 2003 Mar; 23(5):1688-702. PubMed ID: 12588988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II.
    Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q
    Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tat-associated kinase (P-TEFb): a component of transcription preinitiation and elongation complexes.
    Ping YH; Rana TM
    J Biol Chem; 1999 Mar; 274(11):7399-404. PubMed ID: 10066804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase.
    Marshall NF; Peng J; Xie Z; Price DH
    J Biol Chem; 1996 Oct; 271(43):27176-83. PubMed ID: 8900211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH.
    Wada T; Orphanides G; Hasegawa J; Kim DK; Shima D; Yamaguchi Y; Fukuda A; Hisatake K; Oh S; Reinberg D; Handa H
    Mol Cell; 2000 Jun; 5(6):1067-72. PubMed ID: 10912001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene-specific recruitment of positive and negative elongation factors during stimulated transcription of the MKP-1 gene in neuroendocrine cells.
    Fujita T; Ryser S; Tortola S; Piuz I; Schlegel W
    Nucleic Acids Res; 2007; 35(3):1007-17. PubMed ID: 17259211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positive feedback loop mediated by protein phosphatase 1α mobilization of P-TEFb and basal CDK1 drives androgen receptor in prostate cancer.
    Liu X; Gao Y; Ye H; Gerrin S; Ma F; Wu Y; Zhang T; Russo J; Cai C; Yuan X; Liu J; Chen S; Balk SP
    Nucleic Acids Res; 2017 Apr; 45(7):3738-3751. PubMed ID: 28062857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 tat and carboxy-terminal domain substrate.
    Ramanathan Y; Reza SM; Young TM; Mathews MB; Pe'ery T
    J Virol; 1999 Jul; 73(7):5448-58. PubMed ID: 10364292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.