BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 15805251)

  • 1. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer.
    Vaishnavi A; Capelletti M; Le AT; Kako S; Butaney M; Ercan D; Mahale S; Davies KD; Aisner DL; Pilling AB; Berge EM; Kim J; Sasaki H; Park S; Kryukov G; Garraway LA; Hammerman PS; Haas J; Andrews SW; Lipson D; Stephens PJ; Miller VA; Varella-Garcia M; Jänne PA; Doebele RC
    Nat Med; 2013 Nov; 19(11):1469-1472. PubMed ID: 24162815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Characterization of Sporadic Pediatric Thyroid Carcinoma with the DNA/RNA ThyroSeq v2 Next-Generation Sequencing Assay.
    Picarsic JL; Buryk MA; Ozolek J; Ranganathan S; Monaco SE; Simons JP; Witchel SF; Gurtunca N; Joyce J; Zhong S; Nikiforova MN; Nikiforov YE
    Pediatr Dev Pathol; 2016; 19(2):115-22. PubMed ID: 26367451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biogenesis of chromosome translocations.
    Roukos V; Misteli T
    Nat Cell Biol; 2014 Apr; 16(4):293-300. PubMed ID: 24691255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oncogenic rearrangements driving ionizing radiation-associated human cancer.
    Santoro M; Carlomagno F
    J Clin Invest; 2013 Nov; 123(11):4566-8. PubMed ID: 24162670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers.
    Ricarte-Filho JC; Li S; Garcia-Rendueles ME; Montero-Conde C; Voza F; Knauf JA; Heguy A; Viale A; Bogdanova T; Thomas GA; Mason CE; Fagin JA
    J Clin Invest; 2013 Nov; 123(11):4935-44. PubMed ID: 24135138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cellular etiology of chromosome translocations.
    Roukos V; Burman B; Misteli T
    Curr Opin Cell Biol; 2013 Jun; 25(3):357-64. PubMed ID: 23498663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics.
    Leeman-Neill RJ; Brenner AV; Little MP; Bogdanova TI; Hatch M; Zurnadzy LY; Mabuchi K; Tronko MD; Nikiforov YE
    Cancer; 2013 May; 119(10):1792-9. PubMed ID: 23436219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency of close positioning of chromosomal loci detected by FRET correlates with their participation in carcinogenic rearrangements in human cells.
    Gandhi M; Evdokimova V; Nikiforov YE
    Genes Chromosomes Cancer; 2012 Nov; 51(11):1037-44. PubMed ID: 22887574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suitability of animal models for studying radiation-induced thyroid cancer in humans: evidence from nuclear architecture.
    Gandhi M; Nikiforov YE
    Thyroid; 2011 Dec; 21(12):1331-7. PubMed ID: 22136268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular genetics and diagnosis of thyroid cancer.
    Nikiforov YE; Nikiforova MN
    Nat Rev Endocrinol; 2011 Aug; 7(10):569-80. PubMed ID: 21878896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CBFB and MYH11 in inv(16)(p13q22) of acute myeloid leukemia displaying close spatial proximity in interphase nuclei of human hematopoietic stem cells.
    Weckerle AB; Santra M; Ng MC; Koty PP; Wang YH
    Genes Chromosomes Cancer; 2011 Sep; 50(9):746-55. PubMed ID: 21638519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in molecular diagnosis of thyroid cancer.
    Legakis I; Syrigos K
    J Thyroid Res; 2011; 2011():384213. PubMed ID: 21603167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of chromosomal rearrangements in solid tumors: the model of papillary thyroid carcinoma.
    Gandhi M; Evdokimova V; Nikiforov YE
    Mol Cell Endocrinol; 2010 May; 321(1):36-43. PubMed ID: 19766698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene position within chromosome territories correlates with their involvement in distinct rearrangement types in thyroid cancer cells.
    Gandhi MS; Stringer JR; Nikiforova MN; Medvedovic M; Nikiforov YE
    Genes Chromosomes Cancer; 2009 Mar; 48(3):222-8. PubMed ID: 19025793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers.
    Lockwood WW; Chari R; Coe BP; Girard L; Macaulay C; Lam S; Gazdar AF; Minna JD; Lam WL
    Oncogene; 2008 Jul; 27(33):4615-24. PubMed ID: 18391978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial genome organization in the formation of chromosomal translocations.
    Meaburn KJ; Misteli T; Soutoglou E
    Semin Cancer Biol; 2007 Feb; 17(1):80-90. PubMed ID: 17137790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximity of TPR and NTRK1 rearranging loci in human thyrocytes.
    Roccato E; Bressan P; Sabatella G; Rumio C; Vizzotto L; Pierotti MA; Greco A
    Cancer Res; 2005 Apr; 65(7):2572-6. PubMed ID: 15805251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome 1 rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes.
    Greco A; Miranda C; Pagliardini S; Fusetti L; Bongarzone I; Pierotti MA
    Genes Chromosomes Cancer; 1997 Jun; 19(2):112-23. PubMed ID: 9172002
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.