BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 22200086)

  • 1. Microarray-based comparative genomic hybridization of cancer targets reveals novel, recurrent genetic aberrations in the myelodysplastic syndromes.
    Kolquist KA; Schultz RA; Furrow A; Brown TC; Han JY; Campbell LJ; Wall M; Slovak ML; Shaffer LG; Ballif BC
    Cancer Genet; 2011 Nov; 204(11):603-28. PubMed ID: 22200086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clonal heterogeneity in childhood myelodysplastic syndromes--challenge for the detection of chromosomal imbalances by array-CGH.
    Praulich I; Tauscher M; Göhring G; Glaser S; Hofmann W; Feurstein S; Flotho C; Lichter P; Niemeyer CM; Schlegelberger B; Steinemann D
    Genes Chromosomes Cancer; 2010 Oct; 49(10):885-900. PubMed ID: 20589934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytogenetic and comparative genomic hybridization study of Indian myelodysplastic syndromes.
    Kawankar N; Jijina F; Ghosh K; Vundinti BR
    Cancer Epidemiol; 2011 Aug; 35(4):e1-5. PubMed ID: 21193364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of the Agilent 244K oligonucleotide array-based comparative genomic hybridization platform for clinical cytogenetic diagnosis.
    Yu S; Bittel DC; Kibiryeva N; Zwick DL; Cooley LD
    Am J Clin Pathol; 2009 Sep; 132(3):349-60. PubMed ID: 19687311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution genome-wide array-based comparative genome hybridization reveals cryptic chromosome changes in AML and MDS cases with trisomy 8 as the sole cytogenetic aberration.
    Paulsson K; Heidenblad M; Strömbeck B; Staaf J; Jönsson G; Borg A; Fioretos T; Johansson B
    Leukemia; 2006 May; 20(5):840-6. PubMed ID: 16498392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular definition of chromosome arm 5q deletion end points and detection of hidden aberrations in patients with myelodysplastic syndromes and isolated del(5q) using oligonucleotide array CGH.
    Evers C; Beier M; Poelitz A; Hildebrandt B; Servan K; Drechsler M; Germing U; Royer HD; Royer-Pokora B
    Genes Chromosomes Cancer; 2007 Dec; 46(12):1119-28. PubMed ID: 17823930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Array comparative genomic hybridization of peripheral blood granulocytes of patients with myelodysplastic syndrome detects karyotypic abnormalities.
    Vercauteren SM; Sung S; Starczynowski DT; Lam WL; Bruyere H; Horsman DE; Tsang P; Leitch H; Karsan A
    Am J Clin Pathol; 2010 Jul; 134(1):119-26. PubMed ID: 20551276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Array comparative genomic hybridization analysis of adult acute leukemia patients.
    Yasar D; Karadogan I; Alanoglu G; Akkaya B; Luleci G; Salim O; Timuragaoglu A; Toruner GA; Berker-Karauzum S
    Cancer Genet Cytogenet; 2010 Mar; 197(2):122-9. PubMed ID: 20193845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical significance of previously cryptic copy number alterations and loss of heterozygosity in pediatric acute myeloid leukemia and myelodysplastic syndrome determined using combined array comparative genomic hybridization plus single-nucleotide polymorphism microarray analyses.
    Koh KN; Lee JO; Seo EJ; Lee SW; Suh JK; Im HJ; Seo JJ
    J Korean Med Sci; 2014 Jul; 29(7):926-33. PubMed ID: 25045224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of cytogenetic microarrays in myelodysplastic syndrome characterization.
    Shaffer LG; Ballif BC; Schultz RA
    Methods Mol Biol; 2013; 973():69-85. PubMed ID: 23412784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing karyotype precision by microarray-based comparative genomic hybridization in the myelodysplastic/myeloproliferative syndromes.
    Slovak ML; Smith DD; Bedell V; Hsu YH; O'Donnell M; Forman SJ; Gaal K; McDaniel L; Schultz R; Ballif BC; Shaffer LG
    Mol Cytogenet; 2010 Nov; 3():23. PubMed ID: 21078186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of chromosome arm 20q abnormalities in myeloid malignancies using genome-wide single nucleotide polymorphism array analysis.
    Huh J; Tiu RV; Gondek LP; O'Keefe CL; Jasek M; Makishima H; Jankowska AM; Jiang Y; Verma A; Theil KS; McDevitt MA; Maciejewski JP
    Genes Chromosomes Cancer; 2010 Apr; 49(4):390-9. PubMed ID: 20095039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multicenter, cross-platform clinical validation study of cancer cytogenomic arrays.
    Li MM; Monzon FA; Biegel JA; Jobanputra V; Laffin JJ; Levy B; Leon A; Miron P; Rossi MR; Toruner G; Alvarez K; Doho G; Dougherty MJ; Hu X; Kash S; Streck D; Znoyko I; Hagenkord JM; Wolff DJ
    Cancer Genet; 2015 Nov; 208(11):525-36. PubMed ID: 26454669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cytogenetic profiling of complex karyotypes in primary myelodysplastic syndromes and acute myeloid leukemia.
    Trost D; Hildebrandt B; Beier M; Müller N; Germing U; Royer-Pokora B
    Cancer Genet Cytogenet; 2006 Feb; 165(1):51-63. PubMed ID: 16490597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromothripsis Is a Recurrent Genomic Abnormality in High-Risk Myelodysplastic Syndromes.
    Abáigar M; Robledo C; Benito R; Ramos F; Díez-Campelo M; Hermosín L; Sánchez-Del-Real J; Alonso JM; Cuello R; Megido M; Rodríguez JN; Martín-Núñez G; Aguilar C; Vargas M; Martín AA; García JL; Kohlmann A; Del Cañizo MC; Hernández-Rivas JM
    PLoS One; 2016; 11(10):e0164370. PubMed ID: 27741277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterisation of a recurrent, semi-cryptic RUNX1 translocation t(7;21) in myelodysplastic syndrome and acute myeloid leukaemia.
    Foster N; Paulsson K; Sales M; Cunningham J; Groves M; O'Connor N; Begum S; Stubbs T; McMullan DJ; Griffiths M; Pratt N; Tauro S
    Br J Haematol; 2010 Mar; 148(6):938-43. PubMed ID: 20064152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer.
    Tsukamoto Y; Uchida T; Karnan S; Noguchi T; Nguyen LT; Tanigawa M; Takeuchi I; Matsuura K; Hijiya N; Nakada C; Kishida T; Kawahara K; Ito H; Murakami K; Fujioka T; Seto M; Moriyama M
    J Pathol; 2008 Dec; 216(4):471-82. PubMed ID: 18798223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focal 9p instability in hematologic neoplasias revealed by comparative genomic hybridization and single-nucleotide polymorphism microarray analyses.
    Usvasalo A; Ninomiya S; Räty R; Hollmén J; Saarinen-Pihkala UM; Elonen E; Knuutila S
    Genes Chromosomes Cancer; 2010 Apr; 49(4):309-18. PubMed ID: 20013897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of multiplex FISH in identifying chromosome involvement in myelodysplastic syndromes and acute myeloid leukemias with complex karyotypes: a report on 28 cases.
    Barouk-Simonet E; Soenen-Cornu V; Roumier C; Cosson A; Laï JL; Fenaux P; Preudhomme C
    Cancer Genet Cytogenet; 2005 Mar; 157(2):118-26. PubMed ID: 15721632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence in situ hybridization analysis of 110 hematopoietic disorders with chromosome 5 abnormalities: do de novo and therapy-related myelodysplastic syndrome-acute myeloid leukemia actually differ?
    Lessard M; Hélias C; Struski S; Perrusson N; Uettwiller F; Mozziconacci MJ; Lafage-Pochitaloff M; Dastugue N; Terré C; Brizard F; Cornillet-Lefebvre P; Mugneret F; Barin C; Herry A; Luquet I; Desangles F; Michaux L; Verellen-Dumoulin C; Perrot C; Van den Akker J; Lespinasse J; Eclache V; Berger R;
    Cancer Genet Cytogenet; 2007 Jul; 176(1):1-21. PubMed ID: 17574959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.