BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29038000)

  • 1. Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer.
    Mekala JR; Naushad SM; Ponnusamy L; Arivazhagan G; Sakthiprasad V; Pal-Bhadra M
    Gene; 2018 Jan; 641():248-258. PubMed ID: 29038000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic modulations in triple-negative breast cancer: Therapeutic implications for tumor microenvironment.
    Zhou L; Yu CW
    Pharmacol Res; 2024 Jun; 204():107205. PubMed ID: 38719195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apigenin and its combination with Vorinostat induces apoptotic-mediated cell death in TNBC by modulating the epigenetic and apoptotic regulators and related miRNAs.
    Nimal S; Kumbhar N; Saruchi ; Rathore S; Naik N; Paymal S; Gacche RN
    Sci Rep; 2024 Apr; 14(1):9540. PubMed ID: 38664447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging therapeutic strategies in cancer therapy by HDAC inhibition as the chemotherapeutic potent and epigenetic regulator.
    Karati D; Mukherjee S; Roy S
    Med Oncol; 2024 Mar; 41(4):84. PubMed ID: 38438564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal quantitative microRNA-155 imaging reports immune-mediated changes in a triple-negative breast cancer model.
    Skourti E; Volpe A; Lang C; Johnson P; Panagaki F; Fruhwirth GO
    Front Immunol; 2023; 14():1180233. PubMed ID: 37359535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic modifiers synergize with immune-checkpoint blockade to enhance long-lasting antitumor efficacy.
    Baretti M; Yarchoan M
    J Clin Invest; 2021 Aug; 131(16):. PubMed ID: 34396984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EPIKOL, a chromatin-focused CRISPR/Cas9-based screening platform, to identify cancer-specific epigenetic vulnerabilities.
    Yedier-Bayram O; Gokbayrak B; Kayabolen A; Aksu AC; Cavga AD; Cingöz A; Kala EY; Karabiyik G; Günsay R; Esin B; Morova T; Uyulur F; Syed H; Philpott M; Cribbs AP; Kung SHY; Lack NA; Onder TT; Bagci-Onder T
    Cell Death Dis; 2022 Aug; 13(8):710. PubMed ID: 35973998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting microRNAs: a new action mechanism of natural compounds.
    Lin Q; Ma L; Liu Z; Yang Z; Wang J; Liu J; Jiang G
    Oncotarget; 2017 Feb; 8(9):15961-15970. PubMed ID: 28052018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. microRNA-130a suppresses breast cancer cell migration and invasion by targeting FOSL1 and upregulating ZO-1.
    Chen X; Zhao M; Huang J; Li Y; Wang S; Harrington CA; Qian DZ; Sun XX; Dai MS
    J Cell Biochem; 2018 Jun; 119(6):4945-4956. PubMed ID: 29384218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HDAC inhibitor suppresses proliferation and invasion of breast cancer cells through regulation of miR-200c targeting CRKL.
    Bian X; Liang Z; Feng A; Salgado E; Shim H
    Biochem Pharmacol; 2018 Jan; 147():30-37. PubMed ID: 29155146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MiR-200 family and cancer: From a meta-analysis view.
    Huang GL; Sun J; Lu Y; Liu Y; Cao H; Zhang H; Calin GA
    Mol Aspects Med; 2019 Dec; 70():57-71. PubMed ID: 31558294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The microRNAs miR-200b-3p and miR-429-5p target the LIMK1/CFL1 pathway to inhibit growth and motility of breast cancer cells.
    Li D; Wang H; Song H; Xu H; Zhao B; Wu C; Hu J; Wu T; Xie D; Zhao J; Shen Q; Fang L
    Oncotarget; 2017 Oct; 8(49):85276-85289. PubMed ID: 29156719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNAs in regulation of triple-negative breast cancer progression.
    Piasecka D; Braun M; Kordek R; Sadej R; Romanska H
    J Cancer Res Clin Oncol; 2018 Aug; 144(8):1401-1411. PubMed ID: 29923083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory roles of the miR-200 family in neurodegenerative diseases.
    Fu J; Peng L; Tao T; Chen Y; Li Z; Li J
    Biomed Pharmacother; 2019 Nov; 119():109409. PubMed ID: 31518873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liver X Receptors (LXRs) in cancer-an Eagle's view on molecular insights and therapeutic opportunities.
    Ramalingam PS; Elangovan S; Mekala JR; Arumugam S
    Front Cell Dev Biol; 2024; 12():1386102. PubMed ID: 38550382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer metastasis under the magnifying glass of epigenetics and epitranscriptomics.
    Janin M; Davalos V; Esteller M
    Cancer Metastasis Rev; 2023 Dec; 42(4):1071-1112. PubMed ID: 37369946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Biomarkers and Treatment Advances in Triple-Negative Breast Cancer.
    El Hejjioui B; Lamrabet S; Amrani Joutei S; Senhaji N; Bouhafa T; Malhouf MA; Bennis S; Bouguenouch L
    Diagnostics (Basel); 2023 Jun; 13(11):. PubMed ID: 37296801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. microRNA-497 slows esophageal cancer development and reverses chemotherapy resistance through its target QKI.
    Xie YX; Zhou ZH; Liu SW; Zhang Y; Liu WJ; Zhang RK; He ML; Qiu JG; Wang L; Jiang BH
    Aging (Albany NY); 2023 May; 15(9):3791-3806. PubMed ID: 37171386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing Epigenetics for Breast Cancer Therapy: The Role of DNA Methylation, Histone Modifications, and MicroRNA.
    Szczepanek J; Skorupa M; Jarkiewicz-Tretyn J; Cybulski C; Tretyn A
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review.
    Sahafnejad Z; Ramazi S; Allahverdi A
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.