BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30209539)

  • 1. Crosstalk of protein kinase C ε with Smad2/3 promotes tumor cell proliferation in prostate cancer cells by enhancing aerobic glycolysis.
    Xu W; Zeng F; Li S; Li G; Lai X; Wang QJ; Deng F
    Cell Mol Life Sci; 2018 Dec; 75(24):4583-4598. PubMed ID: 30209539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Docetaxel suppressed cell proliferation through Smad3/HIF-1α-mediated glycolysis in prostate cancer cells.
    Peng J; He Z; Yuan Y; Xie J; Zhou Y; Guo B; Guo J
    Cell Commun Signal; 2022 Dec; 20(1):194. PubMed ID: 36536346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential roles of Smad2 and Smad3 in the regulation of TGF-β1-mediated growth inhibition and cell migration in pancreatic ductal adenocarcinoma cells: control by Rac1.
    Ungefroren H; Groth S; Sebens S; Lehnert H; Gieseler F; Fändrich F
    Mol Cancer; 2011 May; 10():67. PubMed ID: 21624123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MiR-1 suppresses tumor cell proliferation in colorectal cancer by inhibition of Smad3-mediated tumor glycolysis.
    Xu W; Zhang Z; Zou K; Cheng Y; Yang M; Chen H; Wang H; Zhao J; Chen P; He L; Chen X; Geng L; Gong S
    Cell Death Dis; 2017 May; 8(5):e2761. PubMed ID: 28471448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells.
    Vo BT; Cody B; Cao Y; Khan SA
    Carcinogenesis; 2012 Nov; 33(11):2054-64. PubMed ID: 22843506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PRKAR2B-HIF-1α loop promotes aerobic glycolysis and tumour growth in prostate cancer.
    Xia L; Sun J; Xie S; Chi C; Zhu Y; Pan J; Dong B; Huang Y; Xia W; Sha J; Xue W
    Cell Prolif; 2020 Nov; 53(11):e12918. PubMed ID: 33025691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer.
    Matsuzaki K; Kitano C; Murata M; Sekimoto G; Yoshida K; Uemura Y; Seki T; Taketani S; Fujisawa J; Okazaki K
    Cancer Res; 2009 Jul; 69(13):5321-30. PubMed ID: 19531654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of nuclear factor κB (NF-κB) in prostate cancer is mediated by protein kinase C epsilon (PKCepsilon).
    Garg R; Blando J; Perez CJ; Wang H; Benavides FJ; Kazanietz MG
    J Biol Chem; 2012 Oct; 287(44):37570-82. PubMed ID: 22955280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinase C epsilon promotes de novo lipogenesis and tumor growth in prostate cancer cells by regulating the phosphorylation and nuclear translocation of pyruvate kinase isoform M2.
    Lai X; Liang Y; Jin J; Zhang H; Wu Z; Li G; Wang J; Zhang Z; Chen H; Zeng F; Deng F
    Exp Cell Res; 2023 Jan; 422(1):113427. PubMed ID: 36400183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical role of Smad2 in tumor suppression and transforming growth factor-beta-induced apoptosis of prostate epithelial cells.
    Yang J; Wahdan-Alaswad R; Danielpour D
    Cancer Res; 2009 Mar; 69(6):2185-90. PubMed ID: 19276350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3- and Src-dependent mechanism.
    Mirzoeva S; Franzen CA; Pelling JC
    Mol Carcinog; 2014 Aug; 53(8):598-609. PubMed ID: 23359392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression.
    Sanità P; Capulli M; Teti A; Galatioto GP; Vicentini C; Chiarugi P; Bologna M; Angelucci A
    BMC Cancer; 2014 Mar; 14():154. PubMed ID: 24597899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phosphorylation of the Smad2/3 linker region by nemo-like kinase regulates TGF-β signaling.
    Liang J; Zhou Y; Zhang N; Wang D; Cheng X; Li K; Huang R; Lu Y; Wang H; Han D; Wu W; Han M; Miao S; Wang L; Zhao H; Song W
    J Biol Chem; 2021; 296():100512. PubMed ID: 33676893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgenic overexpression of PKCε in the mouse prostate induces preneoplastic lesions.
    Benavides F; Blando J; Perez CJ; Garg R; Conti CJ; DiGiovanni J; Kazanietz MG
    Cell Cycle; 2011 Jan; 10(2):268-77. PubMed ID: 21224724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutant p53 disrupts role of ShcA protein in balancing Smad protein-dependent and -independent signaling activity of transforming growth factor-β (TGF-β).
    Lin S; Yu L; Yang J; Liu Z; Karia B; Bishop AJR; Jackson J; Lozano G; Copland JA; Mu X; Sun B; Sun LZ
    J Biol Chem; 2011 Dec; 286(51):44023-44034. PubMed ID: 22039050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein kinase Cepsilon interacts with signal transducers and activators of transcription 3 (Stat3), phosphorylates Stat3Ser727, and regulates its constitutive activation in prostate cancer.
    Aziz MH; Manoharan HT; Church DR; Dreckschmidt NE; Zhong W; Oberley TD; Wilding G; Verma AK
    Cancer Res; 2007 Sep; 67(18):8828-38. PubMed ID: 17875724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforming growth factor-beta suppressed Id-1 Expression in a smad3-dependent manner in LoVo cells.
    Song H; Guo B; Zhang J; Song C
    Anat Rec (Hoboken); 2010 Jan; 293(1):42-7. PubMed ID: 19798702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3.
    Yang F; Chung AC; Huang XR; Lan HY
    Hypertension; 2009 Oct; 54(4):877-84. PubMed ID: 19667256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long non-‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer.
    Weng W; Liu C; Li G; Ruan Q; Li H; Lin N; Chen G
    Mol Med Rep; 2021 Dec; 24(6):. PubMed ID: 34643247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased TGF-β1-mediated suppression of growth and motility in castrate-resistant prostate cancer cells is consistent with Smad2/3 signaling.
    Miles FL; Tung NS; Aguiar AA; Kurtoglu S; Sikes RA
    Prostate; 2012 Sep; 72(12):1339-50. PubMed ID: 22228025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.