BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30596229)

  • 1. Targeted Profiling of Heat Shock Proteome in Radioresistant Breast Cancer Cells.
    Miao W; Fan M; Huang M; Li JJ; Wang Y
    Chem Res Toxicol; 2019 Feb; 32(2):326-332. PubMed ID: 30596229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiling global kinome signatures of the radioresistant MCF-7/C6 breast cancer cells using MRM-based targeted proteomics.
    Guo L; Xiao Y; Fan M; Li JJ; Wang Y
    J Proteome Res; 2015 Jan; 14(1):193-201. PubMed ID: 25341124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Proteomic Analysis of Small GTPases in Radioresistant Breast Cancer Cells.
    Gao Z; Yang YY; Huang M; Qi TF; Wang H; Wang Y
    Anal Chem; 2022 Nov; 94(43):14925-14930. PubMed ID: 36264766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Proteomic Analysis Revealed Kinome Reprogramming during Acquisition of Radioresistance in Breast Cancer Cells.
    Miao W; Bade D; Wang Y
    J Proteome Res; 2021 May; 20(5):2830-2838. PubMed ID: 33739118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and characterisation of acquired radioresistant breast cancer cell lines.
    Gray M; Turnbull AK; Ward C; Meehan J; Martínez-Pérez C; Bonello M; Pang LY; Langdon SP; Kunkler IH; Murray A; Argyle D
    Radiat Oncol; 2019 Apr; 14(1):64. PubMed ID: 30987655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Targeted Proteomic Approach for Heat Shock Proteins Reveals DNAJB4 as a Suppressor for Melanoma Metastasis.
    Miao W; Li L; Wang Y
    Anal Chem; 2018 Jun; 90(11):6835-6842. PubMed ID: 29722524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2-Methoxyestradiol, an endogenous estrogen metabolite, sensitizes radioresistant MCF-7/FIR breast cancer cells through multiple mechanisms.
    Salama S; Diaz-Arrastia C; Patel D; Botting S; Hatch S
    Int J Radiat Oncol Biol Phys; 2011 May; 80(1):231-9. PubMed ID: 21392897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted Profiling of Epitranscriptomic Reader, Writer, and Eraser Proteins Accompanied with Radioresistance in Breast Cancer Cells.
    Qi TF; Miao W; Wang Y
    Anal Chem; 2022 Jan; 94(3):1525-1530. PubMed ID: 35021009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic identification of putative biomarkers of radiotherapy resistance: a possible role for the 26S proteasome?
    Smith L; Qutob O; Watson MB; Beavis AW; Potts D; Welham KJ; Garimella V; Lind MJ; Drew PJ; Cawkwell L
    Neoplasia; 2009 Nov; 11(11):1194-207. PubMed ID: 19881955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Level of Radiation-Induced Heat Shock Protein with a Molecular Weight of 27 and 70 kDa is the Hallmark of Radioresistant SP Cells of MCF-7 Breast Cancer Culture.
    Matchuk ON; Zamulaeva IA
    Radiats Biol Radioecol; 2016 Jul; 56(4):382-388. PubMed ID: 30703297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative membrane proteomics analyses of breast cancer cell lines to understand the molecular mechanism of breast cancer brain metastasis.
    Peng W; Zhang Y; Zhu R; Mechref Y
    Electrophoresis; 2017 Sep; 38(17):2124-2134. PubMed ID: 28523741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative proteome analysis identifies MAP2K6 as potential regulator of LIFR-induced radioresistance in nasopharyngeal carcinoma cells.
    Li Z; Fu J; Li N; Shen L
    Biochem Biophys Res Commun; 2018 Oct; 505(1):274-281. PubMed ID: 30245131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of protein biomarkers and signaling pathways associated with prostate cancer radioresistance using label-free LC-MS/MS proteomic approach.
    Chang L; Ni J; Beretov J; Wasinger VC; Hao J; Bucci J; Malouf D; Gillatt D; Graham PH; Li Y
    Sci Rep; 2017 Feb; 7():41834. PubMed ID: 28225015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Proteomic Analysis of Irradiation-Induced Radioresistant Breast Cancer Cells Using Label-Free Quantitation.
    Ying Y; Bian L; Meng Y; Zhang M; Yao Y; Bo F; Li D
    Front Biosci (Landmark Ed); 2023 Oct; 28(10):244. PubMed ID: 37919065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα.
    Luo M; Ding L; Li Q; Yao H
    Breast Cancer; 2017 Sep; 24(5):673-682. PubMed ID: 28138801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics of the radioresistant phenotype in head-and-neck cancer: Gp96 as a novel prediction marker and sensitizing target for radiotherapy.
    Lin TY; Chang JT; Wang HM; Chan SH; Chiu CC; Lin CY; Fan KH; Liao CT; Chen IH; Liu TZ; Li HF; Cheng AJ
    Int J Radiat Oncol Biol Phys; 2010 Sep; 78(1):246-56. PubMed ID: 20615631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein profiling and transcript expression levels of heat shock proteins in 17beta-estradiol-treated human MCF-7 breast cancer cells.
    Lee SU; Kim BT; Min YK; Kim SH
    Cell Biol Int; 2006 Dec; 30(12):983-91. PubMed ID: 16962797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endoplasmic reticulum protein 29 (ERp29) confers radioresistance through the DNA repair gene, O(6)-methylguanine DNA-methyltransferase, in breast cancer cells.
    Chen S; Zhang Y; Zhang D
    Sci Rep; 2015 Sep; 5():14723. PubMed ID: 26420420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitizing tumor cells to radiation by targeting the heat shock response.
    Schilling D; Kühnel A; Konrad S; Tetzlaff F; Bayer C; Yaglom J; Multhoff G
    Cancer Lett; 2015 May; 360(2):294-301. PubMed ID: 25721082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 17beta-hydroxysteroid dehydrogenase type 5 is negatively correlated to apoptosis inhibitor GRP78 and tumor-secreted protein PGK1, and modulates breast cancer cell viability and proliferation.
    Xu D; Aka JA; Wang R; Lin SX
    J Steroid Biochem Mol Biol; 2017 Jul; 171():270-280. PubMed ID: 28457968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.