BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32120313)

  • 1. Cholesterol-modified DP7 enhances the effect of individualized cancer immunotherapy based on neoantigens.
    Zhang R; Tang L; Tian Y; Ji X; Hu Q; Zhou B; Zhenyu D; Heng X; Yang L
    Biomaterials; 2020 May; 241():119852. PubMed ID: 32120313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DP7-C-modified liposomes enhance immune responses and the antitumor effect of a neoantigen-based mRNA vaccine.
    Zhang R; Tang L; Tian Y; Ji X; Hu Q; Zhou B; Ding Z; Xu H; Yang L
    J Control Release; 2020 Dec; 328():210-221. PubMed ID: 32860927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personalized neoantigen-pulsed dendritic cell vaccines show superior immunogenicity to neoantigen-adjuvant vaccines in mouse tumor models.
    Zhang R; Yuan F; Shu Y; Tian Y; Zhou B; Yi L; Zhang X; Ding Z; Xu H; Yang L
    Cancer Immunol Immunother; 2020 Jan; 69(1):135-145. PubMed ID: 31807878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Peptide-Based Small RNA Delivery System to Suppress Tumor Growth by Remodeling the Tumor Microenvironment.
    Zhang R; Tang L; Zhao B; Tian Y; Zhou B; Mu Y; Yang L
    Mol Pharm; 2021 Mar; 18(3):1431-1443. PubMed ID: 33522823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol modified DP7 and pantothenic acid induce dendritic cell homing to enhance the efficacy of dendritic cell vaccines.
    Zhang R; Tang L; Li Q; Tian Y; Zhao B; Zhou B; Yang L
    Mol Biomed; 2021 Dec; 2(1):37. PubMed ID: 35006477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted Codelivery of an Antigen and Dual Agonists by Hybrid Nanoparticles for Enhanced Cancer Immunotherapy.
    Zhang L; Wu S; Qin Y; Fan F; Zhang Z; Huang C; Ji W; Lu L; Wang C; Sun H; Leng X; Kong D; Zhu D
    Nano Lett; 2019 Jul; 19(7):4237-4249. PubMed ID: 30868883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy.
    Zhou S; Huang Y; Chen Y; Liu S; Xu M; Jiang T; Song Q; Jiang G; Gu X; Gao X; Chen J
    Biomaterials; 2020 Mar; 235():119795. PubMed ID: 32014739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Polymeric Prodrug Nanoplatform for Vaccination Immunotherapy of Cancer.
    Zhou L; Hou B; Wang D; Sun F; Song R; Shao Q; Wang H; Yu H; Li Y
    Nano Lett; 2020 Jun; 20(6):4393-4402. PubMed ID: 32459969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor antigen processing and presentation depend critically on dendritic cell type and the mode of antigen delivery.
    Schnurr M; Chen Q; Shin A; Chen W; Toy T; Jenderek C; Green S; Miloradovic L; Drane D; Davis ID; Villadangos J; Shortman K; Maraskovsky E; Cebon J
    Blood; 2005 Mar; 105(6):2465-72. PubMed ID: 15546948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient antigen gene transduction using Arg-Gly-Asp fiber-mutant adenovirus vectors can potentiate antitumor vaccine efficacy and maturation of murine dendritic cells.
    Okada N; Saito T; Masunaga Y; Tsukada Y; Nakagawa S; Mizuguchi H; Mori K; Okada Y; Fujita T; Hayakawa T; Mayumi T; Yamamoto A
    Cancer Res; 2001 Nov; 61(21):7913-9. PubMed ID: 11691812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens.
    Iranpour S; Nejati V; Delirezh N; Biparva P; Shirian S
    J Exp Clin Cancer Res; 2016 Oct; 35(1):168. PubMed ID: 27782834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Personalized Neoantigen-Pulsed DC Vaccines: Advances in Clinical Applications.
    Tang L; Zhang R; Zhang X; Yang L
    Front Oncol; 2021; 11():701777. PubMed ID: 34381724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.
    Osada T; Nagaoka K; Takahara M; Yang XY; Liu CX; Guo H; Roy Choudhury K; Hobeika A; Hartman Z; Morse MA; Lyerly HK
    J Immunother; 2015 May; 38(4):155-64. PubMed ID: 25839441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel strategy utilizing ultrasound for antigen delivery in dendritic cell-based cancer immunotherapy.
    Suzuki R; Oda Y; Utoguchi N; Namai E; Taira Y; Okada N; Kadowaki N; Kodama T; Tachibana K; Maruyama K
    J Control Release; 2009 Feb; 133(3):198-205. PubMed ID: 19000727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Dendrimer Peptide (KK2DP7) Delivery System with Dual Functions of Lymph Node Targeting and Immune Adjuvants as a General Strategy for Cancer Immunotherapy.
    Zhang R; Tang L; Wang Y; Tian Y; Wu S; Zhou B; Dong C; Zhao B; Yang Y; Xie D; Yang L
    Adv Sci (Weinh); 2023 May; 10(15):e2300116. PubMed ID: 36950751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adjuvant for vaccine immunotherapy of cancer--focusing on Toll-like receptor 2 and 3 agonists for safely enhancing antitumor immunity.
    Seya T; Shime H; Takeda Y; Tatematsu M; Takashima K; Matsumoto M
    Cancer Sci; 2015 Dec; 106(12):1659-68. PubMed ID: 26395101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses.
    Silva M; Silva Z; Marques G; Ferro T; Gonçalves M; Monteiro M; van Vliet SJ; Mohr E; Lino AC; Fernandes AR; Lima FA; van Kooyk Y; Matos T; Tadokoro CE; Videira PA
    Oncotarget; 2016 Jul; 7(27):41053-41066. PubMed ID: 27203391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Dendritic-Cell-Based Vaccines and PD-1 Blockade in Self-Assembled Peptide Nanofibrous Hydrogel to Amplify Antitumor T-Cell Immunity.
    Yang P; Song H; Qin Y; Huang P; Zhang C; Kong D; Wang W
    Nano Lett; 2018 Jul; 18(7):4377-4385. PubMed ID: 29932335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendritic cell biology and its role in tumor immunotherapy.
    Wang Y; Xiang Y; Xin VW; Wang XW; Peng XC; Liu XQ; Wang D; Li N; Cheng JT; Lyv YN; Cui SZ; Ma Z; Zhang Q; Xin HW
    J Hematol Oncol; 2020 Aug; 13(1):107. PubMed ID: 32746880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Self-Assembled Micelles Based on Cholesterol-Modified Antimicrobial Peptide (DP7) for Safe and Effective Systemic Administration in Animal Models of Bacterial Infection.
    Zhang R; Wu F; Wu L; Tian Y; Zhou B; Zhang X; Huang R; Yu C; He G; Yang L
    Antimicrob Agents Chemother; 2018 Nov; 62(11):. PubMed ID: 30201818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.