BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33589748)

  • 1. Cytoplasmic DROSHA and non-canonical mechanisms of MiR-155 biogenesis in FLT3-ITD acute myeloid leukemia.
    Nguyen LXT; Zhang B; Hoang DH; Zhao D; Wang H; Wu H; Su YL; Dong H; Rodriguez-Rodriguez S; Armstrong B; Ghoda LY; Perrotti D; Pichiorri F; Chen J; Li L; Kortylewski M; Rockne RC; Kuo YH; Khaled S; Carlesso N; Marcucci G
    Leukemia; 2021 Aug; 35(8):2285-2298. PubMed ID: 33589748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA networks in FLT3-ITD acute myeloid leukemia.
    Hoang DH; Zhao D; Branciamore S; Maestrini D; Rodriguez IR; Kuo YH; Rockne R; Khaled SK; Zhang B; Nguyen LXT; Marcucci G
    Proc Natl Acad Sci U S A; 2022 Apr; 119(16):e2112482119. PubMed ID: 35412895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NF-κB/STAT5/miR-155 network targets PU.1 in FLT3-ITD-driven acute myeloid leukemia.
    Gerloff D; Grundler R; Wurm AA; Bräuer-Hartmann D; Katzerke C; Hartmann JU; Madan V; Müller-Tidow C; Duyster J; Tenen DG; Niederwieser D; Behre G
    Leukemia; 2015 Mar; 29(3):535-47. PubMed ID: 25092144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia.
    Long J; Jia MY; Fang WY; Chen XJ; Mu LL; Wang ZY; Shen Y; Xiang RF; Wang LN; Wang L; Jiang CH; Jiang JL; Zhang WJ; Sun YD; Chang L; Gao WH; Wang Y; Li JM; Hong DL; Liang AB; Hu J
    Blood; 2020 Apr; 135(17):1472-1483. PubMed ID: 32315388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silvestrol exhibits significant in vivo and in vitro antileukemic activities and inhibits FLT3 and miR-155 expressions in acute myeloid leukemia.
    Alachkar H; Santhanam R; Harb JG; Lucas DM; Oaks JJ; Hickey CJ; Pan L; Kinghorn AD; Caligiuri MA; Perrotti D; Byrd JC; Garzon R; Grever MR; Marcucci G
    J Hematol Oncol; 2013 Mar; 6():21. PubMed ID: 23497456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Features of Ras activation by a mislocalized oncogenic tyrosine kinase: FLT3 ITD signals through K-Ras at the plasma membrane of acute myeloid leukemia cells.
    Köthe S; Müller JP; Böhmer SA; Tschongov T; Fricke M; Koch S; Thiede C; Requardt RP; Rubio I; Böhmer FD
    J Cell Sci; 2013 Oct; 126(Pt 20):4746-55. PubMed ID: 23943874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PRMT1-mediated FLT3 arginine methylation promotes maintenance of FLT3-ITD
    He X; Zhu Y; Lin YC; Li M; Du J; Dong H; Sun J; Zhu L; Wang H; Ding Z; Zhang L; Zhang L; Zhao D; Wang Z; Wu H; Zhang H; Jiang W; Xu Y; Jin J; Shen Y; Perry J; Zhao X; Zhang B; Liu S; Xue SL; Shen B; Chen CW; Chen J; Khaled S; Kuo YH; Marcucci G; Luo Y; Li L
    Blood; 2019 Aug; 134(6):548-560. PubMed ID: 31217189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oncogenic FLT3-ITD supports autophagy via ATF4 in acute myeloid leukemia.
    Heydt Q; Larrue C; Saland E; Bertoli S; Sarry JE; Besson A; Manenti S; Joffre C; Mansat-De Mas V
    Oncogene; 2018 Feb; 37(6):787-797. PubMed ID: 29059168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias.
    Zorko NA; Bernot KM; Whitman SP; Siebenaler RF; Ahmed EH; Marcucci GG; Yanes DA; McConnell KK; Mao C; Kalu C; Zhang X; Jarjoura D; Dorrance AM; Heerema NA; Lee BH; Huang G; Marcucci G; Caligiuri MA
    Blood; 2012 Aug; 120(5):1130-6. PubMed ID: 22674806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia.
    Hospital MA; Jacquel A; Mazed F; Saland E; Larrue C; Mondesir J; Birsen R; Green AS; Lambert M; Sujobert P; Gautier EF; Salnot V; Le Gall M; Decroocq J; Poulain L; Jacque N; Fontenay M; Kosmider O; Récher C; Auberger P; Mayeux P; Bouscary D; Sarry JE; Tamburini J
    Leukemia; 2018 Mar; 32(3):597-605. PubMed ID: 28914261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FLT3-ITD cooperates with Rac1 to modulate the sensitivity of leukemic cells to chemotherapeutic agents via regulation of DNA repair pathways.
    Wu M; Li L; Hamaker M; Small D; Duffield AS
    Haematologica; 2019 Dec; 104(12):2418-2428. PubMed ID: 30975911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant expression of CD7 in myeloblasts is highly associated with de novo acute myeloid leukemias with FLT3/ITD mutation.
    Rausei-Mills V; Chang KL; Gaal KK; Weiss LM; Huang Q
    Am J Clin Pathol; 2008 Apr; 129(4):624-9. PubMed ID: 18343790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CDC25A governs proliferation and differentiation of FLT3-ITD acute myeloid leukemia.
    Bertoli S; Boutzen H; David L; Larrue C; Vergez F; Fernandez-Vidal A; Yuan L; Hospital MA; Tamburini J; Demur C; Delabesse E; Saland E; Sarry JE; Galcera MO; Mansat-De Mas V; Didier C; Dozier C; Récher C; Manenti S
    Oncotarget; 2015 Nov; 6(35):38061-78. PubMed ID: 26515730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal tandem duplication mutations in the tyrosine kinase domain of FLT3 display a higher oncogenic potential than the activation loop D835Y mutation.
    Marhäll A; Heidel F; Fischer T; Rönnstrand L
    Ann Hematol; 2018 May; 97(5):773-780. PubMed ID: 29372308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment-induced arteriolar revascularization and miR-126 enhancement in bone marrow niche protect leukemic stem cells in AML.
    Zhang B; Nguyen LXT; Zhao D; Frankhouser DE; Wang H; Hoang DH; Qiao J; Abundis C; Brehove M; Su YL; Feng Y; Stein A; Ghoda L; Dorrance A; Perrotti D; Chen Z; Han A; Pichiorri F; Jin J; Jovanovic-Talisman T; Caligiuri MA; Kuo CJ; Yoshimura A; Li L; Rockne RC; Kortylewski M; Zheng Y; Carlesso N; Kuo YH; Marcucci G
    J Hematol Oncol; 2021 Aug; 14(1):122. PubMed ID: 34372909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of cup-like nuclei in blasts with FLT3 and NPM1 mutations in acute myeloid leukemia.
    Park BG; Chi HS; Jang S; Park CJ; Kim DY; Lee JH; Lee JH; Lee KH
    Ann Hematol; 2013 Apr; 92(4):451-7. PubMed ID: 23238897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The protein tyrosine phosphatase, Shp2, positively contributes to FLT3-ITD-induced hematopoietic progenitor hyperproliferation and malignant disease in vivo.
    Nabinger SC; Li XJ; Ramdas B; He Y; Zhang X; Zeng L; Richine B; Bowling JD; Fukuda S; Goenka S; Liu Z; Feng GS; Yu M; Sandusky GE; Boswell HS; Zhang ZY; Kapur R; Chan RJ
    Leukemia; 2013 Feb; 27(2):398-408. PubMed ID: 23103841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The FLT3 internal tandem duplication mutation is a secondary target of the aurora B kinase inhibitor AZD1152-HQPA in acute myelogenous leukemia cells.
    Grundy M; Seedhouse C; Shang S; Richardson J; Russell N; Pallis M
    Mol Cancer Ther; 2010 Mar; 9(3):661-72. PubMed ID: 20159992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ULK1 inhibition as a targeted therapeutic strategy for FLT3-ITD-mutated acute myeloid leukemia.
    Hwang DY; Eom JI; Jang JE; Jeung HK; Chung H; Kim JS; Cheong JW; Min YH
    J Exp Clin Cancer Res; 2020 May; 39(1):85. PubMed ID: 32393312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NFATc1 as a therapeutic target in FLT3-ITD-positive AML.
    Metzelder SK; Michel C; von Bonin M; Rehberger M; Hessmann E; Inselmann S; Solovey M; Wang Y; Sohlbach K; Brendel C; Stiewe T; Charles J; Ten Haaf A; Ellenrieder V; Neubauer A; Gattenlöhner S; Bornhäuser M; Burchert A
    Leukemia; 2015 Jul; 29(7):1470-7. PubMed ID: 25976987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.