BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33812985)

  • 1. Ras sumoylation in cell signaling and transformation.
    Dai W; Xie S; Chen C; Choi BH
    Semin Cancer Biol; 2021 Nov; 76():301-309. PubMed ID: 33812985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RAS GTPases are modified by SUMOylation.
    Choi BH; Chen C; Philips M; Dai W
    Oncotarget; 2018 Jan; 9(4):4440-4450. PubMed ID: 29435114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K-Ras Lys-42 is crucial for its signaling, cell migration, and invasion.
    Choi BH; Philips MR; Chen Y; Lu L; Dai W
    J Biol Chem; 2018 Nov; 293(45):17574-17581. PubMed ID: 30228186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oncogenic Ras abrogates MEK SUMOylation that suppresses the ERK pathway and cell transformation.
    Kubota Y; O'Grady P; Saito H; Takekawa M
    Nat Cell Biol; 2011 Mar; 13(3):282-91. PubMed ID: 21336309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oncogenic RAS isoforms show a hierarchical requirement for the guanine nucleotide exchange factor SOS2 to mediate cell transformation.
    Sheffels E; Sealover NE; Wang C; Kim DH; Vazirani IA; Lee E; M Terrell E; Morrison DK; Luo J; Kortum RL
    Sci Signal; 2018 Sep; 11(546):. PubMed ID: 30181243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SUMOylation of Grb2 enhances the ERK activity by increasing its binding with Sos1.
    Qu Y; Chen Q; Lai X; Zhu C; Chen C; Zhao X; Deng R; Xu M; Yuan H; Wang Y; Yu J; Huang J
    Mol Cancer; 2014 Apr; 13():95. PubMed ID: 24775912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUMO wrestling with Ras.
    Zhang H; Luo J
    Small GTPases; 2016 Apr; 7(2):39-46. PubMed ID: 27057691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ras effector mutant expression suggest a negative regulator inhibits lung tumor formation.
    Vandal G; Geiling B; Dankort D
    PLoS One; 2014; 9(1):e84745. PubMed ID: 24489653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorectal Carcinogenesis: Connecting K-RAS-Induced Transformation and CREB Activity In Vitro and In Vivo.
    Steven A; Heiduk M; Recktenwald CV; Hiebl B; Wickenhauser C; Massa C; Seliger B
    Mol Cancer Res; 2015 Aug; 13(8):1248-62. PubMed ID: 25934695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)·extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1.
    Mazalouskas MD; Godoy-Ruiz R; Weber DJ; Zimmer DB; Honkanen RE; Wadzinski BE
    J Biol Chem; 2014 Feb; 289(7):4219-32. PubMed ID: 24371145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating The Role Of Nitric Oxide Synthase In Oncogenic Ras-Driven Tumorigenesis.
    Counter C
    Redox Biol; 2015 Aug; 5():417. PubMed ID: 28162280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An RNAi-based dimorphic genetic screen identified the double bromodomain protein BET-1 as a sumo-dependent attenuator of RAS-mediated signalling.
    Gee F; Fisher K; Klemstein U; Poulin GB
    PLoS One; 2013; 8(12):e83659. PubMed ID: 24349540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposing roles of the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades in Ras-mediated downregulation of tropomyosin.
    Shields JM; Mehta H; Pruitt K; Der CJ
    Mol Cell Biol; 2002 Apr; 22(7):2304-17. PubMed ID: 11884615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oncogenesis driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9.
    Yu B; Swatkoski S; Holly A; Lee LC; Giroux V; Lee CS; Hsu D; Smith JL; Yuen G; Yue J; Ann DK; Simpson RM; Creighton CJ; Figg WD; Gucek M; Luo J
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):E1724-33. PubMed ID: 25805818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sumoylation and Its Contribution to Cancer.
    Lee JS; Choi HJ; Baek SH
    Adv Exp Med Biol; 2017; 963():283-298. PubMed ID: 28197919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A requirement for wild-type Ras isoforms in mutant KRas-driven signalling and transformation.
    Bentley C; Jurinka SS; Kljavin NM; Vartanian S; Ramani SR; Gonzalez LC; Yu K; Modrusan Z; Du P; Bourgon R; Neve RM; Stokoe D
    Biochem J; 2013 Jun; 452(2):313-20. PubMed ID: 23496764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance.
    McCubrey JA; Steelman LS; Abrams SL; Lee JT; Chang F; Bertrand FE; Navolanic PM; Terrian DM; Franklin RA; D'Assoro AB; Salisbury JL; Mazzarino MC; Stivala F; Libra M
    Adv Enzyme Regul; 2006; 46():249-79. PubMed ID: 16854453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoform-specific Ras signaling is growth factor dependent.
    Hood FE; Klinger B; Newlaczyl AU; Sieber A; Dorel M; Oliver SP; Coulson JM; Blüthgen N; Prior IA
    Mol Biol Cell; 2019 Apr; 30(9):1108-1117. PubMed ID: 30785867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TDAG51 is an ERK signaling target that opposes ERK-mediated HME16C mammary epithelial cell transformation.
    Oberst MD; Beberman SJ; Zhao L; Yin JJ; Ward Y; Kelly K
    BMC Cancer; 2008 Jul; 8():189. PubMed ID: 18597688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between wild-type and mutant Ras genes in lung and skin carcinogenesis.
    To MD; Rosario RD; Westcott PM; Banta KL; Balmain A
    Oncogene; 2013 Aug; 32(34):4028-33. PubMed ID: 22945650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.