BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

28 related articles for article (PubMed ID: 35437307)

  • 1. Multiple Roles of PLK1 in Mitosis and Meiosis.
    Kalous J; Aleshkina D
    Cells; 2023 Jan; 12(1):. PubMed ID: 36611980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Plk1 Sensitizes Pancreatic Cancer to Immune Checkpoint Therapy.
    Zhang Z; Cheng L; Li J; Qiao Q; Karki A; Allison DB; Shaker N; Li K; Utturkar SM; Atallah Lanman NM; Rao X; Rychahou P; He D; Konieczny SF; Wang C; Shao Q; Evers BM; Liu X
    Cancer Res; 2022 Oct; 82(19):3532-3548. PubMed ID: 35950917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Present and Future Perspective on PLK1 Inhibition in Cancer Treatment.
    Chiappa M; Petrella S; Damia G; Broggini M; Guffanti F; Ricci F
    Front Oncol; 2022; 12():903016. PubMed ID: 35719948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress on the Localization of PLK1 to the Kinetochore and Its Role in Mitosis.
    Kim T
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UBAP2L-dependent coupling of PLK1 localization and stability during mitosis.
    Guerber L; Vuidel A; Liao Y; Kleiss C; Grandgirard E; Sumara I; Pangou E
    EMBO Rep; 2023 Jun; 24(6):e56241. PubMed ID: 37039032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N
    Xu P; Liu K; Huang S; Lv J; Yan Z; Ge H; Cheng Q; Chen Z; Ji P; Qian Y; Li B; Xu H; Yang L; Xu Z; Zhang D
    Gastric Cancer; 2024 Mar; 27(2):275-291. PubMed ID: 38252226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic Lethality Screening with Recursive Feature Machines.
    Cai C; Radhakrishnan A; Uhler C
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubiquitination Process Mediates Prostate Cancer Development and Metastasis through Multiple Mechanisms.
    Li W; Wang Z
    Cell Biochem Biophys; 2024 Mar; 82(1):77-90. PubMed ID: 37847340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SMAD Proteins in TGF-β Signalling Pathway in Cancer: Regulatory Mechanisms and Clinical Applications.
    Wang Q; Xiong F; Wu G; Wang D; Liu W; Chen J; Qi Y; Wang B; Chen Y
    Diagnostics (Basel); 2023 Aug; 13(17):. PubMed ID: 37685308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An anoikis-related gene signature for prediction of the prognosis in prostate cancer.
    Zhao X; Wang Z; Tang Z; Hu J; Zhou Y; Ge J; Dong J; Xu S
    Front Oncol; 2023; 13():1169425. PubMed ID: 37664042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The prognostic significance of human ovarian aging-related signature in breast cancer after surgery: A multicohort study.
    Hua X; Zhu QW; Zhang YN; Cao L; Wang MD; Gao YS; Chen JY
    Front Immunol; 2023; 14():1139797. PubMed ID: 36960071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SMAD3 promotes expression and activity of the androgen receptor in prostate cancer.
    Jeon HY; Pornour M; Ryu H; Khadka S; Xu R; Jang J; Li D; Chen H; Hussain A; Fazli L; Gleave M; Dong X; Huang F; Wang Q; Barbieri C; Qi J
    Nucleic Acids Res; 2023 Apr; 51(6):2655-2670. PubMed ID: 36727462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational regulation by ribosome-associated quality control in neurodegenerative disease, cancer, and viral infection.
    Lu B
    Front Cell Dev Biol; 2022; 10():970654. PubMed ID: 36187485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PELO facilitates PLK1-induced the ubiquitination and degradation of Smad4 and promotes the progression of prostate cancer.
    Gao P; Hao JL; Xie QW; Han GQ; Xu BB; Hu H; Sa NE; Du XW; Tang HL; Yan J; Dong XM
    Oncogene; 2022 May; 41(21):2945-2957. PubMed ID: 35437307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-539 functions as a tumour suppressor in prostate cancer via the TGF-β/Smad4 signalling pathway by down-regulating DLX1.
    Sun B; Fan Y; Yang A; Liang L; Cao J
    J Cell Mol Med; 2019 Sep; 23(9):5934-5948. PubMed ID: 31298493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression.
    Ding Z; Wu CJ; Chu GC; Xiao Y; Ho D; Zhang J; Perry SR; Labrot ES; Wu X; Lis R; Hoshida Y; Hiller D; Hu B; Jiang S; Zheng H; Stegh AH; Scott KL; Signoretti S; Bardeesy N; Wang YA; Hill DE; Golub TR; Stampfer MJ; Wong WH; Loda M; Mucci L; Chin L; DePinho RA
    Nature; 2011 Feb; 470(7333):269-73. PubMed ID: 21289624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperglycaemia-induced miR-301a promotes cell proliferation by repressing p21 and Smad4 in prostate cancer.
    Li X; Li J; Cai Y; Peng S; Wang J; Xiao Z; Wang Y; Tao Y; Li J; Leng Q; Wu D; Yang S; Ji Z; Han Y; Li L; Gao X; Zeng C; Wen X
    Cancer Lett; 2018 Apr; 418():211-220. PubMed ID: 29331421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GATA2 co-opts TGFβ1/SMAD4 oncogenic signaling and inherited variants at 6q22 to modulate prostate cancer progression.
    Yang X; Zhang Q; Li S; Devarajan R; Luo B; Tan Z; Wang Z; Giannareas N; Wenta T; Ma W; Li Y; Yang Y; Manninen A; Wu S; Wei GH
    J Exp Clin Cancer Res; 2023 Aug; 42(1):198. PubMed ID: 37550764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valproic acid (VPA) inhibits the epithelial-mesenchymal transition in prostate carcinoma via the dual suppression of SMAD4.
    Lan X; Lu G; Yuan C; Mao S; Jiang W; Chen Y; Jin X; Xia Q
    J Cancer Res Clin Oncol; 2016 Jan; 142(1):177-85. PubMed ID: 26206483
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.