BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35446942)

  • 1. Insights into Immune Escape During Tumor Evolution and Response to Immunotherapy Using a Rat Model of Breast Cancer.
    Gil Del Alcazar CR; Trinh A; Alečković M; Rojas Jimenez E; Harper NW; Oliphant MUJ; Xie S; Krop ED; Lulseged B; Murphy KC; Keenan TE; Van Allen EM; Tolaney SM; Freeman GJ; Dillon DA; Muthuswamy SK; Polyak K
    Cancer Immunol Res; 2022 Jun; 10(6):680-697. PubMed ID: 35446942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revival and Recharacterization of a Preclinical Model of Hormone-Dependent Breast Cancer to Study Immunotherapy.
    Roussos Torres ET
    Cancer Immunol Res; 2022 Jun; 10(6):672-673. PubMed ID: 35544128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammary carcinoma cell derived cyclooxygenase 2 suppresses tumor immune surveillance by enhancing intratumoral immune checkpoint activity.
    Markosyan N; Chen EP; Evans RA; Ndong V; Vonderheide RH; Smyth EM
    Breast Cancer Res; 2013; 15(5):R75. PubMed ID: 24004819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relevance of Tumor-Infiltrating Immune Cell Composition and Functionality for Disease Outcome in Breast Cancer.
    Bense RD; Sotiriou C; Piccart-Gebhart MJ; Haanen JBAG; van Vugt MATM; de Vries EGE; Schröder CP; Fehrmann RSN
    J Natl Cancer Inst; 2017 Jan; 109(1):. PubMed ID: 27737921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exhausted T cell signature predicts immunotherapy response in ER-positive breast cancer.
    Terranova-Barberio M; Pawlowska N; Dhawan M; Moasser M; Chien AJ; Melisko ME; Rugo H; Rahimi R; Deal T; Daud A; Rosenblum MD; Thomas S; Munster PN
    Nat Commun; 2020 Jul; 11(1):3584. PubMed ID: 32681091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer.
    Lal JC; Townsend MG; Mehta AK; Oliwa M; Miller E; Sotayo A; Cheney E; Mittendorf EA; Letai A; Guerriero JL
    Breast Cancer Res; 2021 Aug; 23(1):83. PubMed ID: 34353349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct Biomarker Profiles and TCR Sequence Diversity Characterize the Response to PD-L1 Blockade in a Mouse Melanoma Model.
    El Meskini R; Atkinson D; Kulaga A; Abdelmaksoud A; Gumprecht M; Pate N; Hayes S; Oberst M; Kaplan IM; Raber P; Van Dyke T; Sharan SK; Hollingsworth R; Day CP; Merlino G; Weaver Ohler Z
    Mol Cancer Res; 2021 Aug; 19(8):1422-1436. PubMed ID: 33888600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental model of anti-PD-1 resistance exhibits activation of TGFß and Notch pathways and is sensitive to local mRNA immunotherapy.
    Bernardo M; Tolstykh T; Zhang YA; Bangari DS; Cao H; Heyl KA; Lee JS; Malkova NV; Malley K; Marquez E; Pollard J; Qu H; Roberts E; Ryan S; Singh K; Sun F; Wang E; Bahjat K; Wiederschain D; Wagenaar TR
    Oncoimmunology; 2021 Mar; 10(1):1881268. PubMed ID: 33796402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8
    Fang W; Zhou T; Shi H; Yao M; Zhang D; Qian H; Zeng Q; Wang Y; Jin F; Chai C; Chen T
    J Exp Clin Cancer Res; 2021 Jan; 40(1):4. PubMed ID: 33390170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The non-protein coding breast cancer susceptibility locus Mcs5a acts in a non-mammary cell-autonomous fashion through the immune system and modulates T-cell homeostasis and functions.
    Smits BM; Sharma D; Samuelson DJ; Woditschka S; Mau B; Haag JD; Gould MN
    Breast Cancer Res; 2011 Aug; 13(4):R81. PubMed ID: 21846333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of immune responses to anti-PD-1 mono and combination immunotherapy in hematopoietic humanized mice implanted with tumor xenografts.
    Capasso A; Lang J; Pitts TM; Jordan KR; Lieu CH; Davis SL; Diamond JR; Kopetz S; Barbee J; Peterson J; Freed BM; Yacob BW; Bagby SM; Messersmith WA; Slansky JE; Pelanda R; Eckhardt SG
    J Immunother Cancer; 2019 Feb; 7(1):37. PubMed ID: 30736857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunotherapy for the treatment of breast cancer: checkpoint blockade, cancer vaccines, and future directions in combination immunotherapy.
    McArthur HL; Page DB
    Clin Adv Hematol Oncol; 2016 Nov; 14(11):922-933. PubMed ID: 27930644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation.
    Chen X; Gao A; Zhang F; Yang Z; Wang S; Fang Y; Li J; Wang J; Shi W; Wang L; Zheng Y; Sun Y
    Theranostics; 2021; 11(7):3392-3416. PubMed ID: 33537094
    [No Abstract]   [Full Text] [Related]  

  • 14. APOBEC Mutagenesis Inhibits Breast Cancer Growth through Induction of T cell-Mediated Antitumor Immune Responses.
    DiMarco AV; Qin X; McKinney BJ; Garcia NMG; Van Alsten SC; Mendes EA; Force J; Hanks BA; Troester MA; Owzar K; Xie J; Alvarez JV
    Cancer Immunol Res; 2022 Jan; 10(1):70-86. PubMed ID: 34795033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PD-1 Blockade During Post-partum Involution Reactivates the Anti-tumor Response and Reduces Lymphatic Vessel Density.
    Tamburini BAJ; Elder AM; Finlon JM; Winter AB; Wessells VM; Borges VF; Lyons TR
    Front Immunol; 2019; 10():1313. PubMed ID: 31244852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.
    Ascierto PA; Agarwala S; Botti G; Cesano A; Ciliberto G; Davies MA; Demaria S; Dummer R; Eggermont AM; Ferrone S; Fu YX; Gajewski TF; Garbe C; Huber V; Khleif S; Krauthammer M; Lo RS; Masucci G; Palmieri G; Postow M; Puzanov I; Silk A; Spranger S; Stroncek DF; Tarhini A; Taube JM; Testori A; Wang E; Wargo JA; Yee C; Zarour H; Zitvogel L; Fox BA; Mozzillo N; Marincola FM; Thurin M
    J Transl Med; 2016 Nov; 14(1):313. PubMed ID: 27846884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiestrogens in combination with immune checkpoint inhibitors in breast cancer immunotherapy.
    Márquez-Garbán DC; Deng G; Comin-Anduix B; Garcia AJ; Xing Y; Chen HW; Cheung-Lau G; Hamilton N; Jung ME; Pietras RJ
    J Steroid Biochem Mol Biol; 2019 Oct; 193():105415. PubMed ID: 31226312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination Therapy with NHS-muIL12 and Avelumab (anti-PD-L1) Enhances Antitumor Efficacy in Preclinical Cancer Models.
    Xu C; Zhang Y; Rolfe PA; Hernández VM; Guzman W; Kradjian G; Marelli B; Qin G; Qi J; Wang H; Yu H; Tighe R; Lo KM; English JM; Radvanyi L; Lan Y
    Clin Cancer Res; 2017 Oct; 23(19):5869-5880. PubMed ID: 28679778
    [No Abstract]   [Full Text] [Related]  

  • 19. Mammary Tumor-Derived Transplants as Breast Cancer Models to Evaluate Tumor-Immune Interactions and Therapeutic Responses.
    Moore J; Ma L; Lazar AA; Barcellos-Hoff MH
    Cancer Res; 2022 Feb; 82(3):365-376. PubMed ID: 34903599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a new fusion-enhanced oncolytic immunotherapy platform based on herpes simplex virus type 1.
    Thomas S; Kuncheria L; Roulstone V; Kyula JN; Mansfield D; Bommareddy PK; Smith H; Kaufman HL; Harrington KJ; Coffin RS
    J Immunother Cancer; 2019 Aug; 7(1):214. PubMed ID: 31399043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.