BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35659386)

  • 1. FSPBO-DQN: SeGAN based segmentation and Fractional Student Psychology Optimization enabled Deep Q Network for skin cancer detection in IoT applications.
    Kumar KS; Suganthi N; Muppidi S; Kumar BS
    Artif Intell Med; 2022 Jul; 129():102299. PubMed ID: 35659386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.
    Baig R; Bibi M; Hamid A; Kausar S; Khalid S
    Curr Med Imaging; 2020; 16(5):513-533. PubMed ID: 32484086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An IoMT-Based Melanoma Lesion Segmentation Using Conditional Generative Adversarial Networks.
    Ali Z; Naz S; Zaffar H; Choi J; Kim Y
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized self-attention based cycle-consistent generative adversarial network adopted melanoma classification from dermoscopic images.
    Harini P; Madhavi NB; Latha SB; Sasikumar AN
    Microsc Res Tech; 2024 Jun; 87(6):1271-1285. PubMed ID: 38353334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization-enabled deep learning model for disease detection in IoT platform.
    Dhaygude AD
    Network; 2024 May; 35(2):190-211. PubMed ID: 38155546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Tier Slicing Resource Allocation Algorithm Based on Deep Reinforcement Learning and Joint Bidding in Wireless Access Networks.
    Chen G; Zhang X; Shen F; Zeng Q
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of Sports Training Performance Prediction Model Based on a Generative Adversarial Deep Neural Network Algorithm.
    Li G
    Comput Intell Neurosci; 2022; 2022():1211238. PubMed ID: 35637721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.
    Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS
    Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lung nodule segmentation using Salp Shuffled Shepherd Optimization Algorithm-based Generative Adversarial Network.
    Jain S; Indora S; Atal DK
    Comput Biol Med; 2021 Oct; 137():104811. PubMed ID: 34492518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BirCat Optimization for Automatic Segmentation of Brain Tumors and Pixel Change Detection Using Post-operative MRI Images.
    K V S; Sugitha N
    J Digit Imaging; 2023 Apr; 36(2):647-665. PubMed ID: 36544068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.
    Attia M; Hossny M; Zhou H; Nahavandi S; Asadi H; Yazdabadi A
    Comput Methods Programs Biomed; 2019 Aug; 177():17-30. PubMed ID: 31319945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical theory of shape and neuro-fuzzy methodology-based diagnostic analysis: a comparative study on early detection and treatment planning of brain cancer.
    Kar S; Majumder DD
    Int J Clin Oncol; 2017 Aug; 22(4):667-681. PubMed ID: 28321787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flamingo Jelly Fish search optimization-based routing with deep-learning enabled energy prediction in WSN data communication.
    Subramanian D; Subramaniam S; Natarajan K; Thangavel K
    Network; 2024 Feb; 35(1):73-100. PubMed ID: 38044853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms.
    Premaladha J; Ravichandran KS
    J Med Syst; 2016 Apr; 40(4):96. PubMed ID: 26872778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid machine learning-based breast cancer segmentation framework using ultrasound images with optimal weighted features.
    Vijayan S; Panneerselvam R; Roshini TV
    Cell Biochem Funct; 2024 Jun; 42(4):e4054. PubMed ID: 38783623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep-Q-Network-Based Packet Scheduling in an IoT Environment.
    Fu X; Kim JG
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning Based Skin Lesion Segmentation and Classification of Melanoma Using Support Vector Machine (SVM).
    R D S; A S
    Asian Pac J Cancer Prev; 2019 May; 20(5):1555-1561. PubMed ID: 31128062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.
    Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G
    Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smart IoT in Breast Cancer Detection Using Optimal Deep Learning.
    Majji R; G OPP; Rajeswari R; R C
    J Digit Imaging; 2023 Aug; 36(4):1489-1506. PubMed ID: 37221422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ExpACVO-Hybrid Deep learning: Exponential Anti Corona Virus Optimization enabled Hybrid Deep learning for tongue image segmentation towards diabetes mellitus detection.
    Mathew JK; Sathyalakshmi S
    Biomed Signal Process Control; 2023 May; 83():104635. PubMed ID: 36741196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.