BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37203884)

  • 1. Computational pharmacology profiling of borapetoside C against melanoma.
    Bhattacharya K; Khanal P; Patil VS; Dwivedi PSR; Chanu NR; Chaudhary RK; Deka S; Chakraborty A
    J Biomol Struct Dyn; 2024 Apr; 42(6):3233-3248. PubMed ID: 37203884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network pharmacology integrated molecular dynamics reveals the bioactive compounds and potential targets of Tinospora crispa Linn. as insulin sensitizer.
    Zuhri UM; Purwaningsih EH; Fadilah F; Yuliana ND
    PLoS One; 2022; 17(6):e0251837. PubMed ID: 35737707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Borapetoside E, a Clerodane Diterpenoid Extracted from Tinospora crispa, Improves Hyperglycemia and Hyperlipidemia in High-Fat-Diet-Induced Type 2 Diabetes Mice.
    Xu Y; Niu Y; Gao Y; Wang F; Qin W; Lu Y; Hu J; Peng L; Liu J; Xiong W
    J Nat Prod; 2017 Aug; 80(8):2319-2327. PubMed ID: 28742368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoglycemic action of borapetoside A from the plant Tinospora crispa in mice.
    Ruan CT; Lam SH; Lee SS; Su MJ
    Phytomedicine; 2013 Jun; 20(8-9):667-75. PubMed ID: 23523259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Borapetoside C from Tinospora crispa improves insulin sensitivity in diabetic mice.
    Ruan CT; Lam SH; Chi TC; Lee SS; Su MJ
    Phytomedicine; 2012 Jun; 19(8-9):719-24. PubMed ID: 22579212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crude extract and purified components isolated from the stems of Tinospora crispa exhibit positive inotropic effects on the isolated left atrium of rats.
    Praman S; Mulvany MJ; Williams DE; Andersen RJ; Jansakul C
    J Ethnopharmacol; 2013 Aug; 149(1):123-32. PubMed ID: 23778316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting Melanoma with a phytochemical pool: Tailing Makisterone C.
    Bhattacharya K; Sikdar J; Hussain I; Barman D; Shrivastava AK; Sahariah BJ; Bhattacharjee A; Chanu NR; Khanal P
    Comput Biol Med; 2023 Nov; 166():107499. PubMed ID: 37778211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical composition and therapeutic mechanism of Xuanbai Chengqi Decoction in the treatment of COVID-19 by network pharmacology, molecular docking and molecular dynamic analysis.
    Fan L; Feng S; Wang T; Ding X; An X; Wang Z; Zhou K; Wang M; Zhai X; Li Y
    Mol Divers; 2023 Feb; 27(1):81-102. PubMed ID: 35258759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the key prognostic genes and potential traditional Chinese medicine therapeutic targets in glioblastoma based on bioinformatics and network pharmacology methods.
    Xia Z; Gao P; Chen Y; Shu L; Ye L; Cheng H; Dai X; Hu Y; Wang Z
    Transl Cancer Res; 2022 May; 11(5):1386-1405. PubMed ID: 35706800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism exploration and prognosis study of Astragali Radix-Spreading hedyotis herb for the treatment of lung adenocarcinoma based on bioinformatics approaches and molecular dynamics simulation.
    Guo J; Zhao Y; Wu X; Li G; Zhang Y; Song Y; Du Q
    Front Chem; 2023; 11():1128671. PubMed ID: 37065830
    [No Abstract]   [Full Text] [Related]  

  • 11. Analysis of the potential biological mechanisms of diosmin against renal fibrosis based on network pharmacology and molecular docking approach.
    Zhao WM; Wang ZJ; Shi R; Zhu Y; Li XL; Wang DG
    BMC Complement Med Ther; 2023 May; 23(1):157. PubMed ID: 37179298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the interaction mechanism between potential inhibitor and multi-target Mur enzymes of mycobacterium tuberculosis using molecular docking, molecular dynamics simulation, principal component analysis, free energy landscape, dynamic cross-correlation matrices, vector movements, and binding free energy calculation.
    Kumari M; Singh R; Subbarao N
    J Biomol Struct Dyn; 2022; 40(24):13497-13526. PubMed ID: 34662260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the Mechanism of Sodium Butyrate against Radiation-Induced Lung Injury in Non-Small Cell Lung Cancer Based on Network Pharmacology and Molecular Dynamic Simulations and Molecular Dynamic Simulations.
    Zhang XZ; Chen MJ; Fan PM; Su TS; Liang SX; Jiang W
    Front Oncol; 2022; 12():809772. PubMed ID: 35837112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of the Effect and Potential Mechanism of Echinacoside Against Endometrial Cancer Based on Network Pharmacology and in vitro Experimental Verification.
    Shu W; Wang Z; Zhao R; Shi R; Zhang J; Zhang W; Wang H
    Drug Des Devel Ther; 2022; 16():1847-1863. PubMed ID: 35734366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the mechanism of action of chemical constituents of celery seed against gout disease using network pharmacology, molecular docking, and molecular dynamics simulations.
    Hang NT; Han DK; My TTK; Phuong NV
    J Biomol Struct Dyn; 2024 Apr; 42(6):2834-2845. PubMed ID: 37203990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the therapeutic mechanisms of
    Dwivedi PSR; Patil R; Khanal P; Gurav NS; Murade VD; Hase DP; Kalaskar MG; Ayyanar M; Chikhale RV; Gurav SS
    RSC Adv; 2021 Dec; 11(62):39362-39375. PubMed ID: 35492478
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparative Morpho-Anatomical and HPTLC Profiling of Tinospora Species and Dietary Supplements.
    Parveen A; Adams JS; Raman V; Budel JM; Zhao J; Babu GNM; Ali Z; Khan IA
    Planta Med; 2020 May; 86(7):470-481. PubMed ID: 32168549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying the therapeutic effects of 4-octyl itaconate in treating sepsis based on network pharmacology and molecular docking.
    Chen M; Su W; Chen F; Lai T; Liu Y; Yu D
    Front Genet; 2022; 13():1056405. PubMed ID: 36406124
    [No Abstract]   [Full Text] [Related]  

  • 19. Exploring the pharmacological components and effective mechanism of Mori Folium against periodontitis using network pharmacology and molecular docking.
    Wu Z; Ji X; Shan C; Song J; Zhao J
    Arch Oral Biol; 2022 Jul; 139():105391. PubMed ID: 35430443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the pharmacological mechanisms of Scutellaria baicalensis Georgi on oral leukoplakia by combining network pharmacology, molecular docking and experimental evaluations.
    Hou F; Yu Z; Cheng Y; Liu Y; Liang S; Zhang F
    Phytomedicine; 2022 Aug; 103():154195. PubMed ID: 35667260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.