BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37317878)

  • 1. Aberrant MNX1 expression associated with t(7;12)(q36;p13) pediatric acute myeloid leukemia induces the disease through altering histone methylation.
    Waraky A; Östlund A; Nilsson T; Weichenhan D; Lutsik P; Bähr M; Hey J; Tunali G; Adamsson J; Jacobsson S; Morsy MHA; Li S; Fogelstrand L; Plass C; Palmqvist L
    Haematologica; 2024 Mar; 109(3):725-739. PubMed ID: 37317878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An induced pluripotent stem cell t(7;12)(q36;p13) acute myeloid leukemia model shows high expression of MNX1 and a block in differentiation of the erythroid and megakaryocytic lineages.
    Nilsson T; Waraky A; Östlund A; Li S; Staffas A; Asp J; Fogelstrand L; Abrahamsson J; Palmqvist L
    Int J Cancer; 2022 Sep; 151(5):770-782. PubMed ID: 35583991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MNX1-ETV6 fusion gene in an acute megakaryoblastic leukemia and expression of the MNX1 gene in leukemia and normal B cell lines.
    Taketani T; Taki T; Sako M; Ishii T; Yamaguchi S; Hayashi Y
    Cancer Genet Cytogenet; 2008 Oct; 186(2):115-9. PubMed ID: 18940475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute myeloid leukemia (AML) with t(7;12)(q36;p13) is associated with infancy and trisomy 19: Data from Nordic Society for Pediatric Hematology and Oncology (NOPHO-AML) and review of the literature.
    Espersen ADL; Noren-Nyström U; Abrahamsson J; Ha SY; Pronk CJ; Jahnukainen K; Jónsson ÓG; Lausen B; Palle J; Zeller B; Palmqvist L; Hasle H
    Genes Chromosomes Cancer; 2018 Jul; 57(7):359-365. PubMed ID: 29569294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms associated with t(7;12) acute myeloid leukaemia: from genetics to potential treatment targets.
    Ragusa D; Dijkhuis L; Pina C; Tosi S
    Biosci Rep; 2023 Jan; 43(1):. PubMed ID: 36622782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High incidence of t(7;12)(q36;p13) in infant AML but not in infant ALL, with a dismal outcome and ectopic expression of HLXB9.
    von Bergh AR; van Drunen E; van Wering ER; van Zutven LJ; Hainmann I; Lönnerholm G; Meijerink JP; Pieters R; Beverloo HB
    Genes Chromosomes Cancer; 2006 Aug; 45(8):731-9. PubMed ID: 16646086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-way complex translocations in infant acute myeloid leukemia with t(7;12)(q36;p13): the incidence and correlation of a HLXB9 overexpression.
    Park J; Kim M; Lim J; Kim Y; Han K; Lee J; Chung NG; Cho B; Kim HK
    Cancer Genet Cytogenet; 2009 Jun; 191(2):102-5. PubMed ID: 19446746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of H3K27 methylation identifies poor outcomes in adult-onset acute leukemia.
    van Dijk AD; Hoff FW; Qiu YH; Chandra J; Jabbour E; de Bont ESJM; Horton TM; Kornblau SM
    Clin Epigenetics; 2021 Jan; 13(1):21. PubMed ID: 33509276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic expression of the homeobox gene Cdx2 is the transforming event in a mouse model of t(12;13)(p13;q12) acute myeloid leukemia.
    Rawat VP; Cusan M; Deshpande A; Hiddemann W; Quintanilla-Martinez L; Humphries RK; Bohlander SK; Feuring-Buske M; Buske C
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):817-22. PubMed ID: 14718672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. t(7;12)(q36;p13) and t(7;12)(q32;p13)--translocations involving ETV6 in children 18 months of age or younger with myeloid disorders.
    Slater RM; von Drunen E; Kroes WG; Weghuis DO; van den Berg E; Smit EM; van der Does-van den Berg A; van Wering E; Hählen K; Carroll AJ; Raimondi SC; Beverloo HB
    Leukemia; 2001 Jun; 15(6):915-20. PubMed ID: 11417477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia.
    Müller-Tidow C; Klein HU; Hascher A; Isken F; Tickenbrock L; Thoennissen N; Agrawal-Singh S; Tschanter P; Disselhoff C; Wang Y; Becker A; Thiede C; Ehninger G; zur Stadt U; Koschmieder S; Seidl M; Müller FU; Schmitz W; Schlenke P; McClelland M; Berdel WE; Dugas M; Serve H;
    Blood; 2010 Nov; 116(18):3564-71. PubMed ID: 20498303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MN1 overexpression is driven by loss of DNMT3B methylation activity in inv(16) pediatric AML.
    Larmonie NSD; Arentsen-Peters TCJM; Obulkasim A; Valerio D; Sonneveld E; Danen-van Oorschot AA; de Haas V; Reinhardt D; Zimmermann M; Trka J; Baruchel A; Pieters R; van den Heuvel-Eibrink MM; Zwaan CM; Fornerod M
    Oncogene; 2018 Jan; 37(1):107-115. PubMed ID: 28892045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perturbation of Methionine/S-adenosylmethionine Metabolism as a Novel Vulnerability in MLL Rearranged Leukemia.
    Barve A; Vega A; Shah PP; Ghare S; Casson L; Wunderlich M; Siskind LJ; Beverly LJ
    Cells; 2019 Oct; 8(11):. PubMed ID: 31717699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolving insights on histone methylome regulation in human acute myeloid leukemia pathogenesis and targeted therapy.
    Boila LD; Sengupta A
    Exp Hematol; 2020 Dec; 92():19-31. PubMed ID: 32950598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifications of H3K4 methylation levels are associated with DNA hypermethylation in acute myeloid leukemia.
    Scalea S; Maresca C; Catalanotto C; Marino R; Cogoni C; Reale A; Zampieri M; Zardo G
    FEBS J; 2020 Mar; 287(6):1155-1175. PubMed ID: 31599112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered model of t(7;12)(q36;p13) AML recapitulates patient-specific features and gene expression profiles.
    Ragusa D; Cicirò Y; Federico C; Saccone S; Bruno F; Saeedi R; Sisu C; Pina C; Sala A; Tosi S
    Oncogenesis; 2022 Sep; 11(1):50. PubMed ID: 36057683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signatures of polycomb repression and reduced H3K4 trimethylation are associated with p15INK4b DNA methylation in AML.
    Paul TA; Bies J; Small D; Wolff L
    Blood; 2010 Apr; 115(15):3098-108. PubMed ID: 20190193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated transcriptomic and epigenetic data analysis identifiesaberrant expression of genes in acute myeloid leukemia with MLL‑AF9 translocation.
    Wang F; Li Z; Wang G; Tian X; Zhou J; Yu W; Fan Z; Dong L; Lu J; Xu J; Zhang W; Liang A
    Mol Med Rep; 2020 Feb; 21(2):883-893. PubMed ID: 31789407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SETDB1 mediated histone H3 lysine 9 methylation suppresses MLL-fusion target expression and leukemic transformation.
    Ropa J; Saha N; Hu H; Peterson LF; Talpaz M; Muntean AG
    Haematologica; 2020 Sep; 105(9):2273-2285. PubMed ID: 33054052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translocation t(6;7) in AML-M4 cell line GDM-1 results in MNX1 activation through enhancer-hijacking.
    Weichenhan D; Riedel A; Meinen C; Basic A; Toth R; Bähr M; Lutsik P; Hey J; Sollier E; Toprak UH; Kelekçi S; Lin YY; Hakobyan M; Touzart A; Goyal A; Wierzbinska JA; Schlesner M; Westermann F; Lipka DB; Plass C
    Leukemia; 2023 May; 37(5):1147-1150. PubMed ID: 36949154
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.