BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 37491281)

  • 1. Triple Negative Breast Cancer and Brain Metastases.
    Bansal R; Van Swearingen AED; Anders CK
    Clin Breast Cancer; 2023 Dec; 23(8):825-831. PubMed ID: 37586926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in the management of breast cancer brain metastases.
    Sammons S; Van Swearingen AED; Chung C; Anders CK
    Neurooncol Adv; 2021 Nov; 3(Suppl 5):v63-v74. PubMed ID: 34859234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reprogramming of Lipid Metabolism Mediates Crosstalk, Remodeling, and Intervention of Microenvironment Components in Breast Cancer.
    Wang J; Zhang W; Liu C; Wang L; Wu J; Sun C; Wu Q
    Int J Biol Sci; 2024; 20(5):1884-1904. PubMed ID: 38481820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrogation of endothelial and mural cells in brain metastasis reveals key immune-regulatory mechanisms.
    Bejarano L; Kauzlaric A; Lamprou E; Lourenco J; Fournier N; Ballabio M; Colotti R; Maas R; Galland S; Massara M; Soukup K; Lilja J; Brouland JP; Hottinger AF; Daniel RT; Hegi ME; Joyce JA
    Cancer Cell; 2024 Mar; 42(3):378-395.e10. PubMed ID: 38242126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The roles and mechanisms of SREBP1 in cancer development and drug response.
    He Y; Qi S; Chen L; Zhu J; Liang L; Chen X; Zhang H; Zhuo L; Zhao S; Liu S; Xie T
    Genes Dis; 2024 Jul; 11(4):100987. PubMed ID: 38560498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative multi-omics analysis reveals ortho-topolin riboside exhibits anticancer activity by regulating metabolic pathways in radio-resistant triple negative breast cancer cells.
    Ahn J; Lee JW; Nam SM; Kim DK; Cho SK; Choi HK
    Chem Biol Interact; 2024 May; 398():111089. PubMed ID: 38823535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue.
    Zakic T; Pekovic-Vaughan V; Cvoro A; Korac A; Jankovic A; Korac B
    FEBS Lett; 2023 Dec; ():. PubMed ID: 38140817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Editorial: Lipids, lipid oxidation, and cancer: from biology to therapeutics.
    Bydlowski SP; Poirot M
    Front Oncol; 2024; 14():1414992. PubMed ID: 38706612
    [No Abstract]   [Full Text] [Related]  

  • 9. YTHDF2 favors protumoral macrophage polarization and implies poor survival outcomes in triple negative breast cancer.
    Jin H; Chen Y; Zhang D; Lin J; Huang S; Wu X; Deng W; Huang J; Yao Y
    iScience; 2024 Jun; 27(6):109902. PubMed ID: 38812540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fbxo45 facilitates the malignant progression of breast cancer by targeting Bim for ubiquitination and degradation.
    Zheng M; Wu L; Xiao R; Cai J; Chen W; Shen S
    BMC Cancer; 2024 May; 24(1):619. PubMed ID: 38773471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of lipidome on breast cancer: a Mendelian randomization study.
    Cao Y; Ai M; Liu C
    Lipids Health Dis; 2024 Apr; 23(1):109. PubMed ID: 38622701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of fatty acids synthesis and metabolism-related gene signature and prediction of prognostic model in hepatocellular carcinoma.
    Zhengdong A; Xiaoying X; Shuhui F; Rui L; Zehui T; Guanbin S; Li Y; Xi T; Wanqian L
    Cancer Cell Int; 2024 Apr; 24(1):130. PubMed ID: 38584256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refining breast cancer biomarker discovery and drug targeting through an advanced data-driven approach.
    Rakhshaninejad M; Fathian M; Shirkoohi R; Barzinpour F; Gandomi AH
    BMC Bioinformatics; 2024 Jan; 25(1):33. PubMed ID: 38253993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Transcriptomic and Metabolomic Landscapes of Oral Submucous Fibrosis-Derived Oral Squamous Cell Carcinoma and its Tumor Microenvironment.
    Zhi Y; Wang Q; Zi M; Zhang S; Ge J; Liu K; Lu L; Fan C; Yan Q; Shi L; Chen P; Fan S; Liao Q; Guo C; Wang F; Gong Z; Xiong W; Zeng Z
    Adv Sci (Weinh); 2024 Mar; 11(12):e2306515. PubMed ID: 38229179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic protein PAK restrains the progression of triple negative breast cancer through degrading SREBP-1 mRNA.
    Hu P; Zhou P; Sun T; Liu D; Yin J; Liu L
    Breast Cancer Res; 2023 Dec; 25(1):151. PubMed ID: 38082285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RARRES2 regulates lipid metabolic reprogramming to mediate the development of brain metastasis in triple negative breast cancer.
    Li YQ; Sun FZ; Li CX; Mo HN; Zhou YT; Lv D; Zhai JT; Qian HL; Ma F
    Mil Med Res; 2023 Jul; 10(1):34. PubMed ID: 37491281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RARRES2's impact on lipid metabolism in triple-negative breast cancer: a pathway to brain metastasis.
    Shubhra QTH
    Mil Med Res; 2023 Sep; 10(1):42. PubMed ID: 37700352
    [No Abstract]   [Full Text] [Related]  

  • 18. Brain-metastatic triple-negative breast cancer cells regain growth ability by altering gene expression patterns.
    Choi YK; Woo SM; Cho SG; Moon HE; Yun YJ; Kim JW; Noh DY; Jang BH; Shin YC; Kim JH; Shin HD; Paek SH; Ko SG
    Cancer Genomics Proteomics; 2013; 10(6):265-75. PubMed ID: 24336635
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.