BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 37720688)

  • 1. Immune checkpoint blockade therapy mitigates systemic inflammation and affects cellular FLIP-expressing monocytic myeloid-derived suppressor cells in non-progressor non-small cell lung cancer patients.
    Adamo A; Frusteri C; Pilotto S; Caligola S; Belluomini L; Poffe O; Giacobazzi L; Dusi S; Musiu C; Hu Y; Wang T; Rizzini D; Vella A; Canè S; Sartori G; Insolda J; Sposito M; Incani UC; Carbone C; Piro G; Pettinella F; Qi F; Wang D; Sartoris S; De Sanctis F; Scapini P; Dusi S; Cassatella MA; Bria E; Milella M; Bronte V; Ugel S
    Oncoimmunology; 2023; 12(1):2253644. PubMed ID: 37720688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of Granulocytic Myeloid-Derived Suppressor Cells Overcomes Resistance to Immune Checkpoint Inhibition in LKB1-Deficient Non-Small Cell Lung Cancer.
    Li R; Salehi-Rad R; Crosson W; Momcilovic M; Lim RJ; Ong SL; Huang ZL; Zhang T; Abascal J; Dumitras C; Jing Z; Park SJ; Krysan K; Shackelford DB; Tran LM; Liu B; Dubinett SM
    Cancer Res; 2021 Jun; 81(12):3295-3308. PubMed ID: 33853830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monocytic myeloid-derived suppressor cells as a potent suppressor of tumor immunity in non-small cell lung cancer.
    Pogoda K; Pyszniak M; Rybojad P; Tabarkiewicz J
    Oncol Lett; 2016 Dec; 12(6):4785-4794. PubMed ID: 28101225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of First-Line Treatment on Myeloid-Derived Suppressor Cells' Subpopulations in the Peripheral Blood of Patients with Non-Small Cell Lung Cancer.
    Koinis F; Vetsika EK; Aggouraki D; Skalidaki E; Koutoulaki A; Gkioulmpasani M; Georgoulias V; Kotsakis A
    J Thorac Oncol; 2016 Aug; 11(8):1263-1272. PubMed ID: 27178984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Levels of Circulating Monocytic Myeloid-Derived Suppressive-Like Cells Are Associated With the Primary Resistance to Immune Checkpoint Inhibitors in Advanced Non-Small Cell Lung Cancer: An Exploratory Analysis.
    Bronte G; Petracci E; De Matteis S; Canale M; Zampiva I; Priano I; Cravero P; Andrikou K; Burgio MA; Ulivi P; Delmonte A; Crinò L
    Front Immunol; 2022; 13():866561. PubMed ID: 35493483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circulating and Tumor Myeloid-derived Suppressor Cells in Resectable Non-Small Cell Lung Cancer.
    Yamauchi Y; Safi S; Blattner C; Rathinasamy A; Umansky L; Juenger S; Warth A; Eichhorn M; Muley T; Herth FJF; Dienemann H; Platten M; Beckhove P; Utikal J; Hoffmann H; Umansky V
    Am J Respir Crit Care Med; 2018 Sep; 198(6):777-787. PubMed ID: 29617574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD14(+)S100A9(+) monocytic myeloid-derived suppressor cells and their clinical relevance in non-small cell lung cancer.
    Feng PH; Lee KY; Chang YL; Chan YF; Kuo LW; Lin TY; Chung FT; Kuo CS; Yu CT; Lin SM; Wang CH; Chou CL; Huang CD; Kuo HP
    Am J Respir Crit Care Med; 2012 Nov; 186(10):1025-36. PubMed ID: 22955317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ILT3 (LILRB4) Promotes the Immunosuppressive Function of Tumor-Educated Human Monocytic Myeloid-Derived Suppressor Cells.
    Singh L; Muise ES; Bhattacharya A; Grein J; Javaid S; Stivers P; Zhang J; Qu Y; Joyce-Shaikh B; Loboda A; Zhang C; Meehl M; Chiang DY; Ranganath SH; Rosenzweig M; Brandish PE
    Mol Cancer Res; 2021 Apr; 19(4):702-716. PubMed ID: 33372059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MDSC subtypes and CD39 expression on CD8
    Koh J; Kim Y; Lee KY; Hur JY; Kim MS; Kim B; Cho HJ; Lee YC; Bae YH; Ku BM; Sun JM; Lee SH; Ahn JS; Park K; Ahn MJ
    Eur J Immunol; 2020 Nov; 50(11):1810-1819. PubMed ID: 32510574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HSP90α induces immunosuppressive myeloid cells in melanoma via TLR4 signaling.
    Arkhypov I; Özbay Kurt FG; Bitsch R; Novak D; Petrova V; Lasser S; Hielscher T; Groth C; Lepper A; Hu X; Li W; Utikal J; Altevogt P; Umansky V
    J Immunother Cancer; 2022 Sep; 10(9):. PubMed ID: 36113897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single or combined immune checkpoint inhibitors compared to first-line platinum-based chemotherapy with or without bevacizumab for people with advanced non-small cell lung cancer.
    Ferrara R; Imbimbo M; Malouf R; Paget-Bailly S; Calais F; Marchal C; Westeel V
    Cochrane Database Syst Rev; 2020 Dec; 12(12):CD013257. PubMed ID: 33316104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LAL deficiency induced myeloid-derived suppressor cells as targets and biomarkers for lung cancer.
    Zhao T; Liu S; Hanna NH; Jalal S; Ding X; Wan J; Yan C; Du H
    J Immunother Cancer; 2023 Mar; 11(3):. PubMed ID: 36914206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunosuppressive capacity of circulating MDSC predicts response to immune checkpoint inhibitors in melanoma patients.
    Petrova V; Groth C; Bitsch R; Arkhypov I; Simon SCS; Hetjens S; Müller V; Utikal J; Umansky V
    Front Immunol; 2023; 14():1065767. PubMed ID: 36860876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A circulating subpopulation of monocytic myeloid-derived suppressor cells as an independent prognostic/predictive factor in untreated non-small lung cancer patients.
    Vetsika EK; Koinis F; Gioulbasani M; Aggouraki D; Koutoulaki A; Skalidaki E; Mavroudis D; Georgoulias V; Kotsakis A
    J Immunol Res; 2014; 2014():659294. PubMed ID: 25436215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gr-MDSC-linked asset as a potential immune biomarker in pretreated NSCLC receiving nivolumab as second-line therapy.
    Passaro A; Mancuso P; Gandini S; Spitaleri G; Labanca V; Guerini-Rocco E; Barberis M; Catania C; Del Signore E; de Marinis F; Bertolini F
    Clin Transl Oncol; 2020 Apr; 22(4):603-611. PubMed ID: 31254252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PPP1R15A-expressing monocytic MDSCs promote immunosuppressive liver microenvironment in fibrosis-associated hepatocellular carcinoma.
    Liu X; Liu M; Wu H; Tang W; Yang W; Chan TTH; Zhang L; Chen S; Xiong Z; Liang J; Wai-Yiu Si-Tou W; Shu T; Li J; Cao J; Zhong C; Sun H; Kwong TT; Leung HHW; Wong J; Bo-San Lai P; To KF; Xiang T; Jao-Yiu Sung J; Chan SL; Zhou J; Sze-Lok Cheng A
    JHEP Rep; 2024 Jul; 6(7):101087. PubMed ID: 38882672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy.
    Li X; Zhong J; Deng X; Guo X; Lu Y; Lin J; Huang X; Wang C
    Front Immunol; 2021; 12():754196. PubMed ID: 35003065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thymosin alpha-1 blocks the accumulation of myeloid suppressor cells in NSCLC by inhibiting VEGF production.
    Yang Z; Guo J; Cui K; Du Y; Zhao H; Zhu L; Weng L; Tang W; Guo J; Zhang T; Shi X; Zong H; Jin S; Ma W
    Biomed Pharmacother; 2020 Nov; 131():110740. PubMed ID: 32942159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade.
    Grauers Wiktorin H; Nilsson MS; Kiffin R; Sander FE; Lenox B; Rydström A; Hellstrand K; Martner A
    Cancer Immunol Immunother; 2019 Feb; 68(2):163-174. PubMed ID: 30315349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of primary and acquired resistance to immune checkpoint inhibitors in advanced non-small cell lung cancer: A multiplex immunohistochemistry-based single-cell analysis.
    Isomoto K; Haratani K; Tsujikawa T; Makutani Y; Kawakami H; Takeda M; Yonesaka K; Tanaka K; Iwasa T; Hayashi H; Ito A; Nishio K; Nakagawa K
    Lung Cancer; 2022 Dec; 174():71-82. PubMed ID: 36347190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.