BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38017389)

  • 1. TIGIT
    Tsakmaklis A; Farowski F; Zenner R; Lesker TR; Strowig T; Schlößer H; Lehmann J; von Bergwelt-Baildon M; Mauch C; Schlaak M; Knuever J; Schweinsberg V; Heinzerling LM; Vehreschild MJGT
    BMC Cancer; 2023 Nov; 23(1):1160. PubMed ID: 38017389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Microbiome in Advanced Melanoma: Where Are We Now?
    Fortman DD; Hurd D; Davar D
    Curr Oncol Rep; 2023 Sep; 25(9):997-1016. PubMed ID: 37269504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of unresponsiveness to immune checkpoint inhibition by fecal microbiota transplantation in patients with metastatic melanoma: study protocol for a randomized phase Ib/IIa trial.
    Borgers JSW; Burgers FH; Terveer EM; van Leerdam ME; Korse CM; Kessels R; Flohil CC; Blank CU; Schumacher TN; van Dijk M; Henderickx JGE; Keller JJ; Verspaget HW; Kuijper EJ; Haanen JBAG
    BMC Cancer; 2022 Dec; 22(1):1366. PubMed ID: 36585700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gut microbial species and metabolic pathways associated with response to treatment with immune checkpoint inhibitors in metastatic melanoma.
    Wind TT; Gacesa R; Vich Vila A; de Haan JJ; Jalving M; Weersma RK; Hospers GAP
    Melanoma Res; 2020 Jun; 30(3):235-246. PubMed ID: 31990790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TIGIT, a novel immune checkpoint therapy for melanoma.
    Tang W; Chen J; Ji T; Cong X
    Cell Death Dis; 2023 Jul; 14(7):466. PubMed ID: 37495610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma.
    Lee KA; Thomas AM; Bolte LA; Björk JR; de Ruijter LK; Armanini F; Asnicar F; Blanco-Miguez A; Board R; Calbet-Llopart N; Derosa L; Dhomen N; Brooks K; Harland M; Harries M; Leeming ER; Lorigan P; Manghi P; Marais R; Newton-Bishop J; Nezi L; Pinto F; Potrony M; Puig S; Serra-Bellver P; Shaw HM; Tamburini S; Valpione S; Vijay A; Waldron L; Zitvogel L; Zolfo M; de Vries EGE; Nathan P; Fehrmann RSN; Bataille V; Hospers GAP; Spector TD; Weersma RK; Segata N
    Nat Med; 2022 Mar; 28(3):535-544. PubMed ID: 35228751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The MITRE trial protocol: a study to evaluate the microbiome as a biomarker of efficacy and toxicity in cancer patients receiving immune checkpoint inhibitor therapy.
    Thompson NA; Stewart GD; Welsh SJ; Doherty GJ; Robinson MJ; Neville BA; Vervier K; Harris SR; Adams DJ; Dalchau K; Bruce D; Demiris N; Lawley TD; Corrie PG
    BMC Cancer; 2022 Jan; 22(1):99. PubMed ID: 35073853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PD-1, CTLA-4, LAG-3, and TIGIT: The roles of immune checkpoint receptors on the regulation of human NK cell phenotype and functions.
    Esen F; Deniz G; Aktas EC
    Immunol Lett; 2021 Dec; 240():15-23. PubMed ID: 34599946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors.
    Joachim L; Göttert S; Sax A; Steiger K; Neuhaus K; Heinrich P; Fan K; Orberg ET; Kleigrewe K; Ruland J; Bassermann F; Herr W; Posch C; Heidegger S; Poeck H
    EBioMedicine; 2023 Nov; 97():104834. PubMed ID: 37865045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing radiotherapy-induced NK-cell activity by combining DNA damage-response inhibition and immune checkpoint blockade.
    Patin EC; Dillon MT; Nenclares P; Grove L; Soliman H; Leslie I; Northcote D; Bozhanova G; Crespo-Rodriguez E; Baldock H; Whittock H; Baker G; Kyula J; Guevara J; Melcher AA; Harper J; Ghadially H; Smith S; Pedersen M; McLaughlin M; Harrington KJ
    J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35314434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High co-expression of immune checkpoint receptors PD-1, CTLA-4, LAG-3, TIM-3, and TIGIT on tumor-infiltrating lymphocytes in early-stage breast cancer.
    Mollavelioglu B; Cetin Aktas E; Cabioglu N; Abbasov A; Onder S; Emiroglu S; Tükenmez M; Muslumanoglu M; Igci A; Deniz G; Ozmen V
    World J Surg Oncol; 2022 Oct; 20(1):349. PubMed ID: 36271406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower frequencies of circulating suppressive regulatory T cells and higher frequencies of CD4
    Kovacsovics-Bankowski M; Sweere JM; Healy CP; Sigal N; Cheng LC; Chronister WD; Evans SA; Marsiglio J; Gibson B; Swami U; Erickson-Wayman A; McPherson JP; Derose YS; Eliason AL; Medina CO; Srinivasan R; Spitzer MH; Nguyen N; Hyngstrom J; Hu-Lieskovan S
    J Immunother Cancer; 2024 Jan; 12(1):. PubMed ID: 38233101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteroides vulgatus and Bacteroides dorei predict immune-related adverse events in immune checkpoint blockade treatment of metastatic melanoma.
    Usyk M; Pandey A; Hayes RB; Moran U; Pavlick A; Osman I; Weber JS; Ahn J
    Genome Med; 2021 Oct; 13(1):160. PubMed ID: 34641962
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Tonneau M; Nolin-Lapalme A; Kazandjian S; Auclin E; Panasci J; Benlaifaoui M; Ponce M; Al-Saleh A; Belkaid W; Naimi S; Mihalcioiu C; Watson I; Bouin M; Miller W; Hudson M; Wong MK; Pezo RC; Turcotte S; Bélanger K; Jamal R; Oster P; Velin D; Richard C; Messaoudene M; Elkrief A; Routy B
    Oncoimmunology; 2022; 11(1):2096535. PubMed ID: 35832043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repositioning liothyronine for cancer immunotherapy by blocking the interaction of immune checkpoint TIGIT/PVR.
    Zhou X; Du J; Wang H; Chen C; Jiao L; Cheng X; Zhou X; Chen S; Gou S; Zhao W; Zhai W; Chen J; Gao Y
    Cell Commun Signal; 2020 Sep; 18(1):142. PubMed ID: 32894141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peripheral blood CD3+HLADR+ cells and associated gut microbiome species predict response and overall survival to immune checkpoint blockade.
    Gorgulho J; Roderburg C; Beier F; Bokemeyer C; Brümmendorf TH; Luedde T; Loosen SH
    Front Immunol; 2023; 14():1206953. PubMed ID: 37705980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial Influences on Immune Checkpoint Inhibitor Response in Melanoma: The Interplay between Skin and Gut Microbiota.
    Bouferraa Y; Fares C; Bou Zerdan M; Boyce Kennedy L
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Anti-human T Cell Immunoreceptor with Ig and ITIM Domains (TIGIT) Monoclonal Antibodies for Flow Cytometry.
    Takei J; Asano T; Nanamiya R; Nakamura T; Yanaka M; Hosono H; Tanaka T; Sano M; Kaneko MK; Harada H; Kato Y
    Monoclon Antib Immunodiagn Immunother; 2021 Apr; 40(2):71-75. PubMed ID: 33900817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PD-1 and TIGIT coexpression identifies a circulating CD8 T cell subset predictive of response to anti-PD-1 therapy.
    Simon S; Voillet V; Vignard V; Wu Z; Dabrowski C; Jouand N; Beauvais T; Khammari A; Braudeau C; Josien R; Adotevi O; Laheurte C; Aubin F; Nardin C; Rulli S; Gottardo R; Ramchurren N; Cheever M; Fling SP; Church CD; Nghiem P; Dreno B; Riddell SR; Labarriere N
    J Immunother Cancer; 2020 Nov; 8(2):. PubMed ID: 33188038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity.
    Zhang Q; Bi J; Zheng X; Chen Y; Wang H; Wu W; Wang Z; Wu Q; Peng H; Wei H; Sun R; Tian Z
    Nat Immunol; 2018 Jul; 19(7):723-732. PubMed ID: 29915296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.