BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 38499526)

  • 1. Targeting MCL1-driven anti-apoptotic pathways to overcome hypomethylating agent resistance in
    Montalban-Bravo G; Ma F; Thongon N; Yang H; Gomez IG; Rodriguez-Sevilla JJ; Adema V; Wildeman B; Lockyer P; Kim YJ; Tanaka T; Darbaniyan F; Pancholy S; Zhang G; Al-Atrash G; Dwyer K; Takahashi K; Garcia-Manero G; Kantarjian H; Colla S
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066354
    [No Abstract]   [Full Text] [Related]  

  • 2. Targeting MCL1-driven anti-apoptotic pathways overcomes blast progression after hypomethylating agent failure in chronic myelomonocytic leukemia.
    Montalban-Bravo G; Thongon N; Rodriguez-Sevilla JJ; Ma F; Ganan-Gomez I; Yang H; Kim YJ; Adema V; Wildeman B; Tanaka T; Darbaniyan F; Al-Atrash G; Dwyer K; Loghavi S; Kanagal-Shamanna R; Song X; Zhang J; Takahashi K; Kantarjian H; Garcia-Manero G; Colla S
    Cell Rep Med; 2024 May; ():101585. PubMed ID: 38781960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shutting Down Acute Myeloid Leukemia and Myelodysplastic Syndrome with BCL-2 Family Protein Inhibition.
    Sharma P; Pollyea DA
    Curr Hematol Malig Rep; 2018 Aug; 13(4):256-264. PubMed ID: 29982865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hematopoietic stem cells with granulo-monocytic differentiation state overcome venetoclax sensitivity in patients with myelodysplastic syndromes.
    Rodriguez-Sevilla JJ; Ganan-Gomez I; Ma F; Chien K; Del Rey M; Loghavi S; Montalban-Bravo G; Adema V; Wildeman B; Kanagal-Shamanna R; Bazinet A; Chifotides HT; Thongon N; Calvo X; Hernández-Rivas JM; Díez-Campelo M; Garcia-Manero G; Colla S
    Nat Commun; 2024 Mar; 15(1):2428. PubMed ID: 38499526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Real-life Turkish Experience of Venetoclax Treatment in High-risk Myelodysplastic Syndrome and Acute Myeloid Leukemia.
    Gemici A; Ozkalemkas F; Dogu MH; Tekinalp A; Alacacioglu I; Guney T; Ince I; Geduk A; Cagliyan GA; Maral S; Serin I; Gunduz E; Karakus V; Bekoz HS; Eren R; Pinar IE; Gunes AK; Sargın FD; Sevindik OG
    Clin Lymphoma Myeloma Leuk; 2021 Aug; 21(8):e686-e692. PubMed ID: 34059487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies.
    DiNardo CD; Rausch CR; Benton C; Kadia T; Jain N; Pemmaraju N; Daver N; Covert W; Marx KR; Mace M; Jabbour E; Cortes J; Garcia-Manero G; Ravandi F; Bhalla KN; Kantarjian H; Konopleva M
    Am J Hematol; 2018 Mar; 93(3):401-407. PubMed ID: 29218851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospects for Venetoclax in Myelodysplastic Syndromes.
    Garcia JS
    Hematol Oncol Clin North Am; 2020 Apr; 34(2):441-448. PubMed ID: 32089221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective inhibition of MCL1 overcomes venetoclax resistance in a murine model of myelodysplastic syndromes.
    Fischer MA; Song Y; Arrate MP; Gbyli R; Villaume MT; Smith BN; Childress MA; Stricker TP; Halene S; Savona MR
    Haematologica; 2023 Feb; 108(2):522-531. PubMed ID: 35979721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging treatments for myelodysplastic syndromes: Biological rationales and clinical translation.
    Rodriguez-Sevilla JJ; Adema V; Garcia-Manero G; Colla S
    Cell Rep Med; 2023 Feb; 4(2):100940. PubMed ID: 36787738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation, culture, and immunophenotypic analysis of bone marrow HSPCs from patients with myelodysplastic syndromes.
    Ganan-Gomez I; Clise-Dwyer K; Colla S
    STAR Protoc; 2022 Dec; 3(4):101764. PubMed ID: 36240061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azacitidine plus venetoclax in patients with high-risk myelodysplastic syndromes or chronic myelomonocytic leukaemia: phase 1 results of a single-centre, dose-escalation, dose-expansion, phase 1-2 study.
    Bazinet A; Darbaniyan F; Jabbour E; Montalban-Bravo G; Ohanian M; Chien K; Kadia T; Takahashi K; Masarova L; Short N; Alvarado Y; Yilmaz M; Ravandi F; Andreeff M; Kanagal-Shamanna R; Ganan-Gomez I; Colla S; Qiao W; Huang X; McCue D; Mirabella B; Kantarjian H; Garcia-Manero G
    Lancet Haematol; 2022 Oct; 9(10):e756-e765. PubMed ID: 36063832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stem cell architecture drives myelodysplastic syndrome progression and predicts response to venetoclax-based therapy.
    Ganan-Gomez I; Yang H; Ma F; Montalban-Bravo G; Thongon N; Marchica V; Richard-Carpentier G; Chien K; Manyam G; Wang F; Alfonso A; Chen S; Class C; Kanagal-Shamanna R; Ingram JP; Ogoti Y; Rose A; Loghavi S; Lockyer P; Cambo B; Muftuoglu M; Schneider S; Adema V; McLellan M; Garza J; Marchesini M; Giuliani N; Pellegrini M; Wang J; Walker J; Li Z; Takahashi K; Leverson JD; Bueso-Ramos C; Andreeff M; Clise-Dwyer K; Garcia-Manero G; Colla S
    Nat Med; 2022 Mar; 28(3):557-567. PubMed ID: 35241842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells.
    Stevens BM; Jones CL; Pollyea DA; Culp-Hill R; D'Alessandro A; Winters A; Krug A; Abbott D; Goosman M; Pei S; Ye H; Gillen AE; Becker MW; Savona MR; Smith C; Jordan CT
    Nat Cancer; 2020 Dec; 1(12):1176-1187. PubMed ID: 33884374
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.