BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

25 related articles for article (PubMed ID: 38519031)

  • 1. MELK Promotes Melanoma Growth by Stimulating the NF-κB Pathway.
    Janostiak R; Rauniyar N; Lam TT; Ou J; Zhu LJ; Green MR; Wajapeyee N
    Cell Rep; 2017 Dec; 21(10):2829-2841. PubMed ID: 29212029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DYRK3 phosphorylates SNAPIN to regulate axonal retrograde transport and neurotransmitter release.
    Lee YH; Suh BK; Lee U; Ryu SH; Shin SR; Chang S; Park SK; Chung KC
    Cell Death Discov; 2022 Dec; 8(1):503. PubMed ID: 36585413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual Specificity Kinase DYRK3 Promotes Aggressiveness of Glioblastoma by Altering Mitochondrial Morphology and Function.
    Kim K; Lee S; Kang H; Shin E; Kim HY; Youn H; Youn B
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33804169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1.
    Guo X; Williams JG; Schug TT; Li X
    J Biol Chem; 2010 Apr; 285(17):13223-32. PubMed ID: 20167603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling.
    Wippich F; Bodenmiller B; Trajkovska MG; Wanka S; Aebersold R; Pelkmans L
    Cell; 2013 Feb; 152(4):791-805. PubMed ID: 23415227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 3 Loss Activates Purine Metabolism and Promotes Hepatocellular Carcinoma Progression.
    Ma F; Zhu Y; Liu X; Zhou Q; Hong X; Qu C; Feng X; Zhang Y; Ding Q; Zhao J; Hou J; Zhong M; Zhuo H; Zhong L; Ye Z; Xie W; Liu Y; Xiong Y; Chen H; Piao D; Sun B; Gao Z; Li Q; Zhang Z; Qiu X; Zhang Z
    Hepatology; 2019 Nov; 70(5):1785-1803. PubMed ID: 31066068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-specificity kinase DYRK3 phosphorylates p62 at the Thr-269 residue and promotes melanoma progression.
    Lee YH; Yoon AR; Yun CO; Chung KC
    J Biol Chem; 2024 Apr; 300(4):107206. PubMed ID: 38519031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mTOR signalling pathway in human cancer.
    Pópulo H; Lopes JM; Soares P
    Int J Mol Sci; 2012; 13(2):1886-1918. PubMed ID: 22408430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma.
    Jhanwar-Uniyal M; Dominguez JF; Mohan AL; Tobias ME; Gandhi CD
    Adv Biol Regul; 2022 Jan; 83():100854. PubMed ID: 34996736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of mTORC1 by Upstream Stimuli.
    Melick CH; Jewell JL
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32854217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth.
    Shaw RJ
    Acta Physiol (Oxf); 2009 May; 196(1):65-80. PubMed ID: 19245654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control.
    Becker W
    Cell Cycle; 2012 Sep; 11(18):3389-94. PubMed ID: 22918246
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.