BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38626341)

  • 1. Genetic Alterations in the INK4a/ARF Locus: Effects on Melanoma Development and Progression.
    Ming Z; Lim SY; Rizos H
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33076392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic Strategies for Targeting CDKN2A Loss in Melanoma.
    Kreuger IZM; Slieker RC; van Groningen T; van Doorn R
    J Invest Dermatol; 2023 Jan; 143(1):18-25.e1. PubMed ID: 36123181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De Novo Purine Metabolism is a Metabolic Vulnerability of Cancers with Low p16 Expression.
    Tangudu NK; Buj R; Wang H; Wang J; Cole AR; Uboveja A; Fang R; Amalric A; Yang B; Chatoff A; Crispim CV; Sajjakulnukit P; Lyons MA; Cooper K; Hempel N; Lyssiotis CA; Chandran UR; Snyder NW; Aird KM
    Cancer Res Commun; 2024 May; 4(5):1174-1188. PubMed ID: 38626341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo purine metabolism is a metabolic vulnerability of cancers with low p16 expression.
    Tangudu NK; Buj R; Wang H; Wang J; Cole AR; Uboveja A; Fang R; Amalric A; Sajjakulnukit P; Lyons MA; Cooper K; Hempel N; Snyder NW; Lyssiotis CA; Chandran UR; Aird KM
    bioRxiv; 2023 Sep; ():. PubMed ID: 37503050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines.
    Young RJ; Waldeck K; Martin C; Foo JH; Cameron DP; Kirby L; Do H; Mitchell C; Cullinane C; Liu W; Fox SB; Dutton-Regester K; Hayward NK; Jene N; Dobrovic A; Pearson RB; Christensen JG; Randolph S; McArthur GA; Sheppard KE
    Pigment Cell Melanoma Res; 2014 Jul; 27(4):590-600. PubMed ID: 24495407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CDKN2A gene deletions and loss of p16 expression occur in osteosarcomas that lack RB alterations.
    Nielsen GP; Burns KL; Rosenberg AE; Louis DN
    Am J Pathol; 1998 Jul; 153(1):159-63. PubMed ID: 9665476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of p16 Induces mTORC1-Mediated Nucleotide Metabolic Reprogramming.
    Buj R; Chen CW; Dahl ES; Leon KE; Kuskovsky R; Maglakelidze N; Navaratnarajah M; Zhang G; Doan MT; Jiang H; Zaleski M; Kutzler L; Lacko H; Lu Y; Mills GB; Gowda R; Robertson GP; Warrick JI; Herlyn M; Imamura Y; Kimball SR; DeGraff DJ; Snyder NW; Aird KM
    Cell Rep; 2019 Aug; 28(8):1971-1980.e8. PubMed ID: 31433975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequent genetic defects in the p16/INK4A tumor suppressor in canine cell models of breast cancer and melanoma.
    Lutful Kabir FM; DeInnocentes P; Bird AC; Bird RC
    In Vitro Cell Dev Biol Anim; 2021 May; 57(5):519-530. PubMed ID: 34014456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into Melanoma Clinical Practice: A Perspective for Future Research.
    Lam GT; Martini C; Brooks T; Prabhakaran S; Hopkins AM; Ung BS; Tang J; Caruso MC; Brooks RD; Johnson IRD; Sorvina A; Hickey SM; Karageorgos L; Klebe S; O'Leary JJ; Brooks DA; Logan JM
    Cancers (Basel); 2023 Sep; 15(18):. PubMed ID: 37760601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening in serum-derived medium reveals differential response to compounds targeting metabolism.
    Abbott KL; Ali A; Casalena D; Do BT; Ferreira R; Cheah JH; Soule CK; Deik A; Kunchok T; Schmidt DR; Renner S; Honeder SE; Wu M; Chan SH; Tseyang T; Stoltzfus AT; Michel SLJ; Greaves D; Hsu PP; Ng CW; Zhang CJ; Farsidjani A; Kent JR; Madariaga MLL; Gramatikov IMT; Matheson NJ; Lewis CA; Clish CB; Rees MG; Roth JA; Griner LM; Muir A; Auld DS; Vander Heiden MG
    Cell Chem Biol; 2023 Sep; 30(9):1156-1168.e7. PubMed ID: 37689063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging roles of nucleotide metabolism in cancer.
    Shi DD; Savani MR; Abdullah KG; McBrayer SK
    Trends Cancer; 2023 Aug; 9(8):624-635. PubMed ID: 37173188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of nucleotide metabolism in cancers and immune disorders.
    Ali ES; Ben-Sahra I
    Trends Cell Biol; 2023 Nov; 33(11):950-966. PubMed ID: 36967301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Senescence and Immunotherapy: Redundant Immunomodulatory Pathways Promote Resistance.
    Oesterreich S; Aird KM
    Cancer Immunol Res; 2023 Apr; 11(4):401-404. PubMed ID: 36826438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breast cancer cells survive chemotherapy by activating targetable immune-modulatory programs characterized by PD-L1 or CD80.
    Shahbandi A; Chiu FY; Ungerleider NA; Kvadas R; Mheidly Z; Sun MJS; Tian D; Waizman DA; Anderson AY; Machado HL; Pursell ZF; Rao SG; Jackson JG
    Nat Cancer; 2022 Dec; 3(12):1513-1533. PubMed ID: 36482233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Senescence Rewires Microenvironment Sensing to Facilitate Antitumor Immunity.
    Chen HA; Ho YJ; Mezzadra R; Adrover JM; Smolkin R; Zhu C; Woess K; Bernstein N; Schmitt G; Fong L; Luan W; Wuest A; Tian S; Li X; Broderick C; Hendrickson RC; Egeblad M; Chen Z; Alonso-Curbelo D; Lowe SW
    Cancer Discov; 2023 Feb; 13(2):432-453. PubMed ID: 36302222
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.