BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 38674015)

  • 1. Transforming the Niche: The Emerging Role of Extracellular Vesicles in Acute Myeloid Leukaemia Progression.
    Mendes M; Monteiro AC; Neto E; Barrias CC; Sobrinho-Simões MA; Duarte D; Caires HR
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting the role of the CXCL12/CXCR4 axis in acute myeloid leukaemia.
    Ladikou EE; Chevassut T; Pepper CJ; Pepper AG
    Br J Haematol; 2020 Jun; 189(5):815-825. PubMed ID: 32135579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion.
    Kumar B; Garcia M; Weng L; Jung X; Murakami JL; Hu X; McDonald T; Lin A; Kumar AR; DiGiusto DL; Stein AS; Pullarkat VA; Hui SK; Carlesso N; Kuo YH; Bhatia R; Marcucci G; Chen CC
    Leukemia; 2018 Mar; 32(3):575-587. PubMed ID: 28816238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of the bone marrow niche in hematopoiesis, leukemogenesis, and chemotherapy resistance in acute myeloid leukemia.
    Wang A; Zhong H
    Hematology; 2018 Dec; 23(10):729-739. PubMed ID: 29902132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adhesion Molecules Involved in Stem Cell Niche Retention During Normal Haematopoiesis and in Acute Myeloid Leukaemia.
    Grenier JMP; Testut C; Fauriat C; Mancini SJC; Aurrand-Lions M
    Front Immunol; 2021; 12():756231. PubMed ID: 34867994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. microRNA-1246-containing extracellular vesicles from acute myeloid leukemia cells promote the survival of leukemia stem cells via the LRIG1-meditated STAT3 pathway.
    Chen L; Guo Z; Zhou Y; Ni J; Zhu J; Fan X; Chen X; Liu Y; Li Z; Zhou H
    Aging (Albany NY); 2021 Apr; 13(10):13644-13662. PubMed ID: 33893245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmissible ER stress reconfigures the AML bone marrow compartment.
    Doron B; Abdelhamed S; Butler JT; Hashmi SK; Horton TM; Kurre P
    Leukemia; 2019 Apr; 33(4):918-930. PubMed ID: 30206307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EV-mediated intercellular communication in acute myeloid leukemia: Transport of genetic materials in the bone marrow microenvironment.
    Zhou Q; Li Z; Xi Y
    Exp Hematol; 2024 May; 133():104175. PubMed ID: 38311165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bone marrow microenvironment - Home of the leukemic blasts.
    Shafat MS; Gnaneswaran B; Bowles KM; Rushworth SA
    Blood Rev; 2017 Sep; 31(5):277-286. PubMed ID: 28318761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Microenvironment in Resistance to Therapy in AML.
    Tabe Y; Konopleva M
    Curr Hematol Malig Rep; 2015 Jun; 10(2):96-103. PubMed ID: 25921386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of exosomes in the stemness maintenance and progression of acute myeloid leukemia.
    Li Q; Wang M; Liu L
    Biochem Pharmacol; 2023 Jun; 212():115539. PubMed ID: 37024061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leukemic Stem Cells: From Leukemic Niche Biology to Treatment Opportunities.
    Marchand T; Pinho S
    Front Immunol; 2021; 12():775128. PubMed ID: 34721441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutically targeting SELF-reinforcing leukemic niches in acute myeloid leukemia: A worthy endeavor?
    Bernasconi P; Farina M; Boni M; Dambruoso I; Calvello C
    Am J Hematol; 2016 May; 91(5):507-17. PubMed ID: 26822317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Complexity of Targeting PI3K-Akt-mTOR Signalling in Human Acute Myeloid Leukaemia: The Importance of Leukemic Cell Heterogeneity, Neighbouring Mesenchymal Stem Cells and Immunocompetent Cells.
    Brenner AK; Andersson Tvedt TH; Bruserud Ø
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27845732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IL-8 as mediator in the microenvironment-leukaemia network in acute myeloid leukaemia.
    Kuett A; Rieger C; Perathoner D; Herold T; Wagner M; Sironi S; Sotlar K; Horny HP; Deniffel C; Drolle H; Fiegl M
    Sci Rep; 2015 Dec; 5():18411. PubMed ID: 26674118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia-CXCL6 axis affects arteriolar niche remodeling in acute myeloid leukemia.
    Li L; Man J; Zhao L
    Exp Biol Med (Maywood); 2021 Jan; 246(1):84-96. PubMed ID: 33167688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Hypoxic Bone Marrow Microenvironment in Acute Myeloid Leukemia and Future Therapeutic Opportunities.
    Bruno S; Mancini M; De Santis S; Monaldi C; Cavo M; Soverini S
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential niche and Wnt requirements during acute myeloid leukemia progression.
    Lane SW; Wang YJ; Lo Celso C; Ragu C; Bullinger L; Sykes SM; Ferraro F; Shterental S; Lin CP; Gilliland DG; Scadden DT; Armstrong SA; Williams DA
    Blood; 2011 Sep; 118(10):2849-56. PubMed ID: 21765021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AML-derived extracellular vesicles negatively regulate stem cell pool size: A step toward bone marrow failure.
    Shahrokh B; Allahbakhshian FM; Ahmad G; Fatemeh F; Hossein MM
    Curr Res Transl Med; 2023; 71(1):103375. PubMed ID: 36508911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone Marrow Microenvironment as a Source of New Drug Targets for the Treatment of Acute Myeloid Leukaemia.
    Skelding KA; Barry DL; Theron DZ; Lincz LF
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.