BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38739593)

  • 1. CYB561 supports the neuroendocrine phenotype in castration-resistant prostate cancer.
    Azur RAG; Olarte KCV; Ybañez WS; Ocampo AMM; Bagamasbad PD
    PLoS One; 2024; 19(5):e0300413. PubMed ID: 38739593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EGFR-upregulated LIFR promotes SUCLG2-dependent castration resistance and neuroendocrine differentiation of prostate cancer.
    Lin SR; Wen YC; Yeh HL; Jiang KC; Chen WH; Mokgautsi N; Huang J; Chen WY; Liu YN
    Oncogene; 2020 Oct; 39(44):6757-6775. PubMed ID: 32963351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroendocrine differentiation in usual-type prostatic adenocarcinoma: Molecular characterization and clinical significance.
    Kaur H; Samarska I; Lu J; Faisal F; Maughan BL; Murali S; Asrani K; Alshalalfa M; Antonarakis ES; Epstein JI; Joshu CE; Schaeffer EM; Mosquera JM; Lotan TL
    Prostate; 2020 Sep; 80(12):1012-1023. PubMed ID: 32649013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Novel Diagnosis Biomarkers for Therapy-Related Neuroendocrine Prostate Cancer.
    Zhang C; Qian J; Wu Y; Zhu Z; Yu W; Gong Y; Li X; He Z; Zhou L
    Pathol Oncol Res; 2021; 27():1609968. PubMed ID: 34646089
    [No Abstract]   [Full Text] [Related]  

  • 5.
    Bhagirath D; Yang TL; Tabatabai ZL; Majid S; Dahiya R; Tanaka Y; Saini S
    Clin Cancer Res; 2019 Nov; 25(21):6532-6545. PubMed ID: 31371344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroendocrine Differentiation in Prostate Cancer: Emerging Biology, Models, and Therapies.
    Puca L; Vlachostergios PJ; Beltran H
    Cold Spring Harb Perspect Med; 2019 Feb; 9(2):. PubMed ID: 29844220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isoform 1 of TPD52 (PC-1) promotes neuroendocrine transdifferentiation in prostate cancer cells.
    Moritz T; Venz S; Junker H; Kreuz S; Walther R; Zimmermann U
    Tumour Biol; 2016 Aug; 37(8):10435-46. PubMed ID: 26846108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteogenomic Characterization of Patient-Derived Xenografts Highlights the Role of REST in Neuroendocrine Differentiation of Castration-Resistant Prostate Cancer.
    Flores-Morales A; Bergmann TB; Lavallee C; Batth TS; Lin D; Lerdrup M; Friis S; Bartels A; Kristensen G; Krzyzanowska A; Xue H; Fazli L; Hansen KH; Røder MA; Brasso K; Moreira JM; Bjartell A; Wang Y; Olsen JV; Collins CC; Iglesias-Gato D
    Clin Cancer Res; 2019 Jan; 25(2):595-608. PubMed ID: 30274982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. hASH1 nuclear localization persists in neuroendocrine transdifferentiated prostate cancer cells, even upon reintroduction of androgen.
    Fraser JA; Sutton JE; Tazayoni S; Bruce I; Poole AV
    Sci Rep; 2019 Dec; 9(1):19076. PubMed ID: 31836808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross modulation between the androgen receptor axis and protocadherin-PC in mediating neuroendocrine transdifferentiation and therapeutic resistance of prostate cancer.
    Terry S; Maillé P; Baaddi H; Kheuang L; Soyeux P; Nicolaiew N; Ceraline J; Firlej V; Beltran H; Allory Y; de la Taille A; Vacherot F
    Neoplasia; 2013 Jul; 15(7):761-72. PubMed ID: 23814488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) levels are associated with neuroendocrine differentiation in castration resistant prostate cancer.
    Gong Y; Chippada-Venkata UD; Galsky MD; Huang J; Oh WK
    Prostate; 2015 May; 75(6):616-27. PubMed ID: 25560638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1.
    Hsu EC; Rice MA; Bermudez A; Marques FJG; Aslan M; Liu S; Ghoochani A; Zhang CA; Chen YS; Zlitni A; Kumar S; Nolley R; Habte F; Shen M; Koul K; Peehl DM; Zoubeidi A; Gambhir SS; Kunder CA; Pitteri SJ; Brooks JD; Stoyanova T
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):2032-2042. PubMed ID: 31932422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription.
    Jia L; Wu D; Wang Y; You W; Wang Z; Xiao L; Cai G; Xu Z; Zou C; Wang F; Teoh JY; Ng CF; Yu S; Chan FL
    Oncogene; 2018 Jun; 37(25):3340-3355. PubMed ID: 29555975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular model for neuroendocrine prostate cancer progression.
    Chen R; Dong X; Gleave M
    BJU Int; 2018 Oct; 122(4):560-570. PubMed ID: 29569310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of Fibroblast Activation Protein Is Enriched in Neuroendocrine Prostate Cancer and Predicts Worse Survival.
    Vlachostergios PJ; Karathanasis A; Tzortzis V
    Genes (Basel); 2022 Jan; 13(1):. PubMed ID: 35052475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer.
    Hao J; Ci X; Xue H; Wu R; Dong X; Choi SYC; He H; Wang Y; Zhang F; Qu S; Zhang F; Haegert AM; Gout PW; Zoubeidi A; Collins C; Gleave ME; Lin D; Wang Y
    Eur Urol; 2018 Jun; 73(6):949-960. PubMed ID: 29544736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer.
    Maina PK; Shao P; Liu Q; Fazli L; Tyler S; Nasir M; Dong X; Qi HH
    Oncotarget; 2016 Nov; 7(46):75585-75602. PubMed ID: 27689328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different profiles of neuroendocrine cell differentiation evolve in the PC-310 human prostate cancer model during long-term androgen deprivation.
    Jongsma J; Oomen MH; Noordzij MA; Van Weerden WM; Martens GJ; van der Kwast TH; Schröder FH; van Steenbrugge GJ
    Prostate; 2002 Mar; 50(4):203-15. PubMed ID: 11870798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SRRM4 gene expression correlates with neuroendocrine prostate cancer.
    Li Y; Zhang Q; Lovnicki J; Chen R; Fazli L; Wang Y; Gleave M; Huang J; Dong X
    Prostate; 2019 Jan; 79(1):96-104. PubMed ID: 30155992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Androgen deprivation-induced ZBTB46-PTGS1 signaling promotes neuroendocrine differentiation of prostate cancer.
    Chen WY; Zeng T; Wen YC; Yeh HL; Jiang KC; Chen WH; Zhang Q; Huang J; Liu YN
    Cancer Lett; 2019 Jan; 440-441():35-46. PubMed ID: 30312731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.