BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 38755141)

  • 1. A distinct isoform of lymphoid enhancer binding factor 1 (LEF1) epigenetically restricts EBV reactivation to maintain viral latency.
    Ward BJH; Prasai K; Schaal DL; Wang J; Scott RS
    PLoS Pathog; 2023 Dec; 19(12):e1011873. PubMed ID: 38113273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nucleic acid binding protein SFPQ represses EBV lytic reactivation by promoting histone H1 expression.
    Murray-Nerger LA; Lozano C; Burton EM; Liao Y; Ungerleider NA; Guo R; Gewurz BE
    Nat Commun; 2024 May; 15(1):4156. PubMed ID: 38755141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteasome-dependent degradation of histone H1 subtypes is mediated by its C-terminal domain.
    García-Gomis D; López J; Calderón A; Andrés M; Ponte I; Roque A
    Protein Sci; 2024 May; 33(5):e4970. PubMed ID: 38591484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human histone H1 variants impact splicing outcome by controlling RNA polymerase II elongation.
    Pascal C; Zonszain J; Hameiri O; Gargi-Levi C; Lev-Maor G; Tammer L; Levy T; Tarabeih A; Roy VR; Ben-Salmon S; Elbaz L; Eid M; Hakim T; Abu Rabe'a S; Shalev N; Jordan A; Meshorer E; Ast G
    Mol Cell; 2023 Nov; 83(21):3801-3817.e8. PubMed ID: 37922872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Epstein-Barr virus protein interaction map reveals NLRP3 inflammasome evasion via MAVS UFMylation.
    Yiu SPT; Zerbe C; Vanderwall D; Huttlin EL; Weekes MP; Gewurz BE
    Mol Cell; 2023 Jul; 83(13):2367-2386.e15. PubMed ID: 37311461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EBV Reactivation from Latency Is a Degrading Experience for the Host.
    Casco A; Johannsen E
    Viruses; 2023 Mar; 15(3):. PubMed ID: 36992435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics-based determination of double-stranded RNA interactome reveals known and new factors involved in Sindbis virus infection.
    Girardi E; Messmer M; Lopez P; Fender A; Chicher J; Chane-Woon-Ming B; Hammann P; Pfeffer S
    RNA; 2023 Mar; 29(3):361-375. PubMed ID: 36617674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epstein-Barr virus: Biology and clinical disease.
    Damania B; Kenney SC; Raab-Traub N
    Cell; 2022 Sep; 185(20):3652-3670. PubMed ID: 36113467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and functional interrogation of the SARS-CoV-2 RNA interactome.
    Labeau A; Fery-Simonian L; Lefevre-Utile A; Pourcelot M; Bonnet-Madin L; Soumelis V; Lotteau V; Vidalain PO; Amara A; Meertens L
    Cell Rep; 2022 Apr; 39(4):110744. PubMed ID: 35477000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PROTAC targeted protein degraders: the past is prologue.
    Békés M; Langley DR; Crews CM
    Nat Rev Drug Discov; 2022 Mar; 21(3):181-200. PubMed ID: 35042991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis.
    Bjornevik K; Cortese M; Healy BC; Kuhle J; Mina MJ; Leng Y; Elledge SJ; Niebuhr DW; Scher AI; Munger KL; Ascherio A
    Science; 2022 Jan; 375(6578):296-301. PubMed ID: 35025605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LncRNA HCP5 as a potential therapeutic target and prognostic biomarker for various cancers: a meta‑analysis and bioinformatics analysis.
    Hu SP; Ge MX; Gao L; Jiang M; Hu KW
    Cancer Cell Int; 2021 Dec; 21(1):686. PubMed ID: 34923990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic control of the Epstein-Barr lifecycle.
    Guo R; Gewurz BE
    Curr Opin Virol; 2022 Feb; 52():78-88. PubMed ID: 34891084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A viral histone-like protein exploits antagonism between linker histones and HMGB proteins to obstruct the cell cycle.
    Lynch KL; Dillon MR; Bat-Erdene M; Lewis HC; Kaai RJ; Arnold EA; Avgousti DC
    Curr Biol; 2021 Dec; 31(23):5227-5237.e7. PubMed ID: 34666003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone H1 Mutations in Lymphoma: A Link(er) between Chromatin Organization, Developmental Reprogramming, and Cancer.
    Soshnev AA; Allis CD; Cesarman E; Melnick AM
    Cancer Res; 2021 Dec; 81(24):6061-6070. PubMed ID: 34580064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysics of Chromatin Remodeling.
    Nodelman IM; Bowman GD
    Annu Rev Biophys; 2021 May; 50():73-93. PubMed ID: 33395550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kaposi's Sarcoma-Associated Herpesvirus Processivity Factor, ORF59, Binds to Canonical and Linker Histones, and Its Carboxy Terminus Is Dispensable for Viral DNA Synthesis.
    Gutierrez IV; Sarkar P; Rossetto CC
    J Virol; 2021 Feb; 95(6):. PubMed ID: 33361421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H1 histones control the epigenetic landscape by local chromatin compaction.
    Willcockson MA; Healton SE; Weiss CN; Bartholdy BA; Botbol Y; Mishra LN; Sidhwani DS; Wilson TJ; Pinto HB; Maron MI; Skalina KA; Toro LN; Zhao J; Lee CH; Hou H; Yusufova N; Meydan C; Osunsade A; David Y; Cesarman E; Melnick AM; Sidoli S; Garcia BA; Edelmann W; Macian F; Skoultchi AI
    Nature; 2021 Jan; 589(7841):293-298. PubMed ID: 33299182
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.