BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38758815)

  • 1. GZ17-6.02 kills PDX isolates of uveal melanoma.
    Booth L; Roberts JL; Spasojevic I; Baker KC; Poklepovic A; West C; Kirkwood JM; Dent P
    Oncotarget; 2024 May; 15():328-344. PubMed ID: 38758815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neratinib and entinostat combine to rapidly reduce the expression of K-RAS, N-RAS, Gα
    Booth L; Roberts JL; Sander C; Lalani AS; Kirkwood JM; Hancock JF; Poklepovic A; Dent P
    Cancer Biol Ther; 2019; 20(5):700-710. PubMed ID: 30571927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GZ17-6.02 interacts with proteasome inhibitors to kill multiple myeloma cells.
    Booth L; Roberts JL; West C; Dent P
    Oncotarget; 2024 Mar; 15():159-174. PubMed ID: 38441437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GZ17-6.02 and axitinib interact to kill renal carcinoma cells.
    Booth L; West C; Moore RP; Hoff DV; Dent P
    Oncotarget; 2022; 13():281-290. PubMed ID: 35136485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GZ17-6.02 and palbociclib interact to kill ER+ breast cancer cells.
    Booth L; West C; Moore RP; Von Hoff D; Dent P
    Oncotarget; 2022; 13():92-104. PubMed ID: 35035775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GZ17-6.02 interacts with bexarotene to kill mycosis fungoides cells.
    Booth MR; Booth L; Roberts JL; West C; Dent P
    Oncotarget; 2024 Feb; 15():124-133. PubMed ID: 38329728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GZ17-6.02 Interacts With [MEK1/2 and B-RAF Inhibitors] to Kill Melanoma Cells.
    Booth L; West C; Von Hoff D; Kirkwood JM; Dent P
    Front Oncol; 2021; 11():656453. PubMed ID: 33898322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GZ17-6.02 and Doxorubicin Interact to Kill Sarcoma Cells via Autophagy and Death Receptor Signaling.
    Booth L; West C; Hoff DV; Dent P
    Front Oncol; 2020; 10():1331. PubMed ID: 32983965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GZ17-6.02 initiates DNA damage causing autophagosome-dependent HDAC degradation resulting in enhanced anti-PD1 checkpoint inhibitory antibody efficacy.
    Booth L; Roberts JL; West C; Von Hoff D; Dent P
    J Cell Physiol; 2020 Nov; 235(11):8098-8113. PubMed ID: 31951027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neratinib kills B-RAF V600E melanoma via ROS-dependent autophagosome formation and death receptor signaling.
    Dent P; Booth L; Poklepovic A; Kirkwood JM
    Pigment Cell Melanoma Res; 2022 Jan; 35(1):66-77. PubMed ID: 34482636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GZ17-6.02 kills prostate cancer cells
    Booth L; Roberts JL; West C; Dent P
    Front Oncol; 2022; 12():1045459. PubMed ID: 36408163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BAP1 deficiency causes loss of melanocytic cell identity in uveal melanoma.
    Matatall KA; Agapova OA; Onken MD; Worley LA; Bowcock AM; Harbour JW
    BMC Cancer; 2013 Aug; 13():371. PubMed ID: 23915344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Verification of EZH2 as a druggable target in metastatic uveal melanoma.
    Jin B; Zhang P; Zou H; Ye H; Wang Y; Zhang J; Yang H; Pan J
    Mol Cancer; 2020 Mar; 19(1):52. PubMed ID: 32127003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GZ17-6.02 and Pemetrexed Interact to Kill Osimertinib-Resistant NSCLC Cells That Express Mutant ERBB1 Proteins.
    Booth L; West C; Moore RP; Von Hoff D; Dent P
    Front Oncol; 2021; 11():711043. PubMed ID: 34490108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BAP1 mutant uveal melanoma is stratified by metabolic phenotypes with distinct vulnerability to metabolic inhibitors.
    Han A; Purwin TJ; Bechtel N; Liao C; Chua V; Seifert E; Sato T; Schug ZT; Speicher DW; Harbour JW; Aplin AE
    Oncogene; 2021 Jan; 40(3):618-632. PubMed ID: 33208912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The HDAC inhibitor AR42 interacts with pazopanib to kill trametinib/dabrafenib-resistant melanoma cells in vitro and in vivo.
    Booth L; Roberts JL; Sander C; Lee J; Kirkwood JM; Poklepovic A; Dent P
    Oncotarget; 2017 Mar; 8(10):16367-16386. PubMed ID: 28146421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma.
    Landreville S; Agapova OA; Matatall KA; Kneass ZT; Onken MD; Lee RS; Bowcock AM; Harbour JW
    Clin Cancer Res; 2012 Jan; 18(2):408-16. PubMed ID: 22038994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metastatic uveal melanoma: biology and emerging treatments.
    Woodman SE
    Cancer J; 2012; 18(2):148-52. PubMed ID: 22453016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of BAP1 expression is associated with an immunosuppressive microenvironment in uveal melanoma, with implications for immunotherapy development.
    Figueiredo CR; Kalirai H; Sacco JJ; Azevedo RA; Duckworth A; Slupsky JR; Coulson JM; Coupland SE
    J Pathol; 2020 Apr; 250(4):420-439. PubMed ID: 31960425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crizotinib, a c-Met inhibitor, prevents metastasis in a metastatic uveal melanoma model.
    Surriga O; Rajasekhar VK; Ambrosini G; Dogan Y; Huang R; Schwartz GK
    Mol Cancer Ther; 2013 Dec; 12(12):2817-26. PubMed ID: 24140933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.